
The Portals 3.3 Message Passing Interface
Revision 1.0

Ron Brightwell1, Arthur B. Maccabe2, Rolf Riesen and Trammell Hudson

May 16, 2003

1R. Brightwell and R. Riesen are with the Scalable Computing Systems Department, Sandia National Laboratories, P.O. Box
5800, Albuquerque, NM 87111-1110, bright@cs.sandia.gov, rolf@cs.sandia.gov.

2A. B. Maccabe is with the Computer Science Department, University of New Mexico, Albuquerque, NM 87131-1386, mac-
cabe@cs.unm.edu.

Abstract

This report presents a specification for the Portals 3.3 message passing interface. Portals 3.3 is intended to allow
scalable, high-performance network communication between nodes of a parallel computing system. Specifically, it
is designed to support a parallel computing platform composed of clusters of commodity workstations connected by
a commodity system area network fabric. In addition, Portals 3.3 is well suited to massively parallel processing and
embedded systems. Portals 3.3 represents an adaption of the data movement layer developed for massively parallel
processing platforms, such as the 4500-node Intel TeraFLOPS machine.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Purpose . 1
1.3 Background . 2
1.4 Scalability . 2
1.5 Communication Model . 2
1.6 Zero Copy, OS Bypass and Application Bypass . 3
1.7 Faults . 3

2 An Overview of the Portals API 4
2.1 Data Movement . 4
2.2 Portal Addressing . 5
2.3 Access Control . 6
2.4 Multi-threaded Applications . 7

3 The Portals API 8
3.1 Naming Conventions . 8
3.2 Base Types . 8

3.2.1 Sizes . 8
3.2.2 Handles . 8
3.2.3 Indexes . 9
3.2.4 Match Bits . 9
3.2.5 Network Interfaces . 9
3.2.6 Identifiers . 9
3.2.7 Status Registers . 9

3.3 Return Codes . 9
3.4 Initialization and Cleanup . 10

3.4.1 PtlInit . 10
3.4.2 PtlFini . 10

3.5 Network Interfaces . 10
3.5.1 The Network Interface Limits Type . 11
3.5.2 PtlNIInit . 11
3.5.3 PtlNIFini . 12
3.5.4 PtlNIStatus . 13
3.5.5 PtlNIDist . 13
3.5.6 PtlNIHandle . 14

3.6 User Identification . 14
3.6.1 PtlGetUid . 14

3.7 Process Identification . 15
3.7.1 The Process Id Type . 15
3.7.2 PtlGetId . 15

3.8 Process Aggregation . 15

iii

iv

3.8.1 The Job Id Type . 16
3.9 Match List Entries and Match Lists . 16

3.9.1 Match Entry Type Definitions . 16
3.9.2 PtlMEAttach . 16
3.9.3 PtlMEAttachAny . 17
3.9.4 PtlMEInsert . 18
3.9.5 PtlMEUnlink . 19

3.10 Memory Descriptors . 19
3.10.1 The Memory Descriptor Type . 19
3.10.2 The Memory Descriptor IO Vector Type . 21
3.10.3 PtlMDAttach . 21
3.10.4 PtlMDBind . 22
3.10.5 PtlMDUnlink . 22
3.10.6 PtlMDUpdate . 23
3.10.7 Thresholds and Unlinking . 24

3.11 Events and Event Queues . 24
3.11.1 Kinds of Events . 24
3.11.2 Event Ordering . 25
3.11.3 Failure Notification . 25
3.11.4 The Event Type . 25
3.11.5 The Event Queue Handler Type . 26
3.11.6 PtlEQAlloc . 27
3.11.7 Event Queue Handler Semantics . 27
3.11.8 PtlEQFree . 28
3.11.9 PtlEQGet . 28
3.11.10 PtlEQWait . 29
3.11.11 PtlEQPoll . 29
3.11.12 Event Semantics . 30

3.12 The Access Control Table . 30
3.12.1 PtlACEntry . 30

3.13 Data Movement Operations . 31
3.13.1 Portal Acknowledgment Type Definition . 31
3.13.2 PtlPut . 31
3.13.3 PtlPutRegion . 32
3.13.4 PtlGet . 33
3.13.5 PtlGetRegion . 33
3.13.6 PtlGetPut . 34

3.14 PtlHandleIsEqual . 35
3.15 Summary . 35

4 The Semantics of Message Transmission 40
4.1 Sending Messages . 40
4.2 Receiving Messages . 41

List of Figures

2.1 Portal Put (Send) . 4
2.2 Portal Get . 5
2.3 Portal Swap (Getput) . 5
2.4 Portal Addressing Structures . 6
2.5 Portals Address Translation . 6

v

List of Tables

3.1 Object Type Codes . 8

3.2 Types Defined by the Portals 3.3 API . 36
3.3 Functions Defined by the Portals 3.3 API . 37
3.4 Function Return Codes for the Portals 3.3 API . 38
3.5 Other Constants Defined by the Portals 3.3 API . 39

4.1 Information Passed in a Put Request . 40
4.2 Information Passed in an Acknowledgement . 41
4.3 Information Passed in a Get Request . 41
4.4 Information Passed in a Reply . 42

vi

Glossary

API Application Programming Interface. A definition of the functions and semantics provided by library of functions.

Initiator A process that initiates a message operation.

Message An application-defined unit of data that is exchanged between processes.

Message Operation Either a put operation, which writes data, or a get operation, which reads data.

Network A network provides point-to-point communication between nodes. Internally, a network may provide mul-
tiple routes between endpoints (to improve fault tolerance or to improve performance characteristics); however,
multiple paths will not be exposed outside of the network.

Node A node is an endpoint in a network. Nodes provide processing capabilities and memory. A node may provide
multiple processors (an SMP node) or it may act as a gateway between networks.

Process A context of execution. A process defines a virtual memory (VM) context. This context is not shared with
other processes. Several threads may share the VM context defined by a process.

Target A process that is acted upon by a message operation.

Thread A context of execution that shares a VM context with other threads.

vii

Chapter 1

Introduction

1.1 Overview
This document describes an application programming interface for message passing between nodes in a system area
network. The goal of this interface is to improve the scalability and performance of network communication by
defining the functions and semantics of message passing required for scaling a parallel computing system to ten
thousand nodes. This goal is achieved by providing an interface that will allow a quality implementation to take
advantage of the inherently scalable design of Portals.

This document is divided into several sections:

Section 1—Introduction This section describes the purpose and scope of the Portals API.

Section 2—An Overview of the Portals 3.1 API This section gives a brief overview of the Portals API. The goal is
to introduce the key concepts and terminology used in the description of the API.

Section 3—The Portals 3.3 API This section describes the functions and semantics of the Portals application pro-
gramming interface.

Section 4–The Semantics of Message Transmission This section describes the semantics of message transmission.
In particular, the information transmitted in each type of message and the processing of incoming messages.

1.2 Purpose
Existing message passing technologies available for commodity cluster networking hardware do not meet the scala-
bility goals required by the Cplant [1] project at Sandia National Laboratories. The goal of the Cplant project is to
construct a commodity cluster that can scale to the order of ten thousand nodes. This number greatly exceeds the
capacity for which existing message passing technologies have been designed and implemented.

In addition to the scalability requirements of the network, these technologies must also be able to support a scal-
able implementation of the Message Passing Interface (MPI) [7] standard, which has become the de facto standard for
parallel scientific computing. While MPI does not impose any scalability limitations, existing message passing tech-
nologies do not provide the functionality needed to allow implementations of MPI to meet the scalability requirements
of Cplant.

The following are properties of a network architecture that do not impose any inherent scalability limitations:

� Connectionless - Many connection-oriented architectures, such as VIA [3] and TCP/IP sockets, have limitations
on the number of peer connections that can be established.

� Network independence - Many communication systems depend on the host processor to perform operations
in order for messages in the network to be consumed. Message consumption from the network should not be
dependent on host processor activity, such as the operating system scheduler or user-level thread scheduler.

1

2

� User-level flow control - Many communication systems manage flow control internally to avoid depleting re-
sources, which can significantly impact performance as the number of communicating processes increases.

� OS Bypass - High performance network communication should not involve memory copies into or out of a
kernel-managed protocol stack.

The following are properties of a network architecture that do not impose scalability limitations for an implementation
of MPI:

� Receiver-managed - Sender-managed message passing implementations require a persistent block of memory
to be available for every process, requiring memory resources to increase with job size and requiring user-level
flow control mechanisms to manage these resources.

� User-level Bypass - While OS Bypass is necessary for high-performance, it alone is not sufficient to support the
Progress Rule of MPI asynchronous operations.

� Unexpected messages - Few communication systems have support for receiving messages for which there is no
prior notification. Support for these types of messages is necessary to avoid flow control and protocol overhead.

1.3 Background
Portals was originally designed for and implemented on the nCube machine as part of the SUNMOS (Sandia/UNM
OS) [6] and Puma [11] lightweight kernel development projects. Portals went through two design phases, the latter
of which is used on the 4500-node Intel TeraFLOPS machine [10]. Portals have been very successful in meeting
the needs of such a large machine, not only as a layer for a high-performance MPI implementation [2], but also for
implementing the scalable run-time environment and parallel I/O capabilities of the machine.

The second generation Portals implementation was designed to take full advantage of the hardware architecture
of large MPP machines. However, efforts to implement this same design on commodity cluster technology identified
several limitations, due to the differences in network hardware as well as to shortcomings in the design of Portals.

1.4 Scalability
The primary goal in the design of Portals is scalability. Portals are designed specifically for an implementation capable
of supporting a parallel job running on tens of thousands of nodes. Performance is critical only in terms of scalability.
That is, the level of message passing performance is characterized by how far it allows an application to scale and not
by how it performs in micro-benchmarks (e.g., a two node bandwidth or latency test).

The Portals API is designed to allow for scalability, not to guarantee it. Portals cannot overcome the shortcomings
of a poorly designed application program. Applications that have inherent scalability limitations, either through design
or implementation, will not be transformed by Portals into scalable applications. Scalability must be addressed at all
levels. Portals do not inhibit scalability, but do not guarantee it either.

To support scalability, the Portals interface maintains a minimal amount of state. Portals provide reliable, ordered
delivery of messages between pairs of processes. They are connectionless: a process is not required to explicitly
establish a point-to-point connection with another process in order to communicate. Moreover, all buffers used in the
transmission of messages are maintained in user space. The target process determines how to respond to incoming
messages, and messages for which there are no buffers are discarded.

1.5 Communication Model
Portals combine the characteristics of both one-side and two-sided communication. They define a “matching put”
operation and a “matching get” operation. The destination of a put (or send) is not an explicit address; instead, each
message contains a set of match bits that allow the receiver to determine where incoming messages should be placed.
This flexibility allows Portals to support both traditional one-sided operations and two-sided send/receive operations.

3

Portals allows the target to determine whether incoming messages are acceptable. A target process can choose to
accept message operations from any specific process or can choose to ignore message operations from any specific
process.

1.6 Zero Copy, OS Bypass and Application Bypass
In traditional system architectures, network packets arrive at the network interface card (NIC), are passed through one
or more protocol layers in the operating system, and eventually copied into the address space of the application. As
network bandwidth began to approach memory copy rates, reduction of memory copies became a critical concern.
This concern lead to the development of zero-copy message passing protocols in which message copies are eliminated
or pipelined to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an interrupt for the CPU when a message arrives from the
network. The interrupt handler then controls the transfer of the incoming message into the address space of the
appropriate application. The interrupt latency, the time from the initiation of an interrupt until the interrupt handler
is running, is fairly significant. To avoid this cost, some modern NICs have processors that can be programmed to
implement part of a message passing protocol. Given a properly designed protocol, it is possible to program the NIC
to control the transfer of incoming messages, without needing to interrupt the CPU. Because this strategy does not
need to involve the OS on every message transfer, it is frequently called “OS Bypass.” ST [12], VIA [3], FM [5],
GM [9], and Portals are examples of OS Bypass protocols.

Many protocols that support OS Bypass still require that the application actively participate in the protocol to
ensure progress. As an example, the long message protocol of PM requires that the application receive and reply
to a request to put or get a long message. This complicates the runtime environment, requiring a thread to process
incoming requests, and significantly increases the latency required to initiate a long message protocol. The Portals
message passing protocol does not require activity on the part of the application to ensure progress. We use the term
“Application Bypass” to refer to this aspect of the Portals protocol.

1.7 Faults
Given the number of components that we are dealing with and the fact that we are interested in supporting applications
that run for very long times, failures are inevitable. The Portals API recognizes that the underlying transport may not
be able to successfully complete an operation once it has been initiated. This is reflected in the fact that the Portals
API reports three types of events: events indicating the initiation of an operation, events indicating the successful
completion of an operation, and events indicating the unsuccessful completion of an operation. Every initiation event
is eventually followed by a successful completion event or an unsuccessful completion event.

Between the time an operation is started and the time that the operation completes (successfully or unsuccessfully),
any memory associated with the operation should be considered volatile. That is, the memory may be changed in
unpredictable ways while the operation is progressing. Once the operation completes, the memory associated with the
operation will not be subject to further modification (from this operation). Notice that unsuccessful operations may
alter memory in an essentially unpredictable fashion.

Chapter 2

An Overview of the Portals API

In this section, we give a conceptual overview of the Portals API. The goal is to provide a context for understanding
the detailed description of the API presented in the next section.

2.1 Data Movement
A Portal represents an opening in the address space of a process. Other processes can use a Portal to read (get), write
(put), or atomically swap (getput) the memory associated with the portal. Every data movement operation involves
two processes, the initiator and the target. The initiator is the process that initiates the data movement operation. The
target is the process that responds to the operation by either accepting the data for a put operation, replying with the
data for a get operation, or both for a swap operation.

In this discussion, activities attributed to a process may refer to activities that are actually performed by the process
or on behalf of the process. The inclusiveness of our terminology is important in the context of application bypass.
In particular, when we note that the target sends a reply in the case of a get operation, it is possible that reply will be
generated by another component in the system, bypassing the application.

Figures 2.1, 2.2, 2.3present graphical interpretations of the Portal data movement operations: put, get, and swap.
In the case of a put operation, the initiator sends a put request message containing the data to the target. The target
translates the Portal addressing information in the request using its local Portal structures. When the request has been
processed, the target optionally sends an acknowledgement message.

Transmission
Data

Translation

Optional
Acknowledgement

Portal

TargetInitiator

Figure 2.1: Portal Put (Send)

In the case of a get operation, the initiator sends a get request to the target. As with the put operation, the target
translates the Portal addressing information in the request using its local Portal structures. Once it has translated the
Portal addressing information, the target sends a reply that includes the requested data.

We should note that Portal address translations are only performed on nodes that respond to operations initiated by
other nodes. Acknowledgements and replies to get operations bypass the portals address translation structures.

4

5

Translation
Portal

Transmission
Data

Request

Initiator Target

Figure 2.2: Portal Get

In the case of a swap operation, the initiator sends a getput message containing data to the target. The target
translates the Portal addressing information using its local Portal structures. The target then sends the current data in
a reply message and deposits the new data from the initiator.

Translation
Portal

Transmission
Data

Transmission
Data

Initiator Target

Figure 2.3: Portal Swap (Getput)

2.2 Portal Addressing

One-sided data movement models (e.g., shmem [4], ST [12], MPI-2 [8]) typically use a triple to address memory on
a remote node. This triple consists of a process id, memory buffer id, and offset. The process id identifies the target
process, the memory buffer id specifies the region of memory to be used for the operation, and the offset specifies an
offset within the memory buffer.

In addition to the standard address components (process id, memory buffer id, and offset), a Portal address includes
a set of match bits. This addressing model is appropriate for supporting one-sided operations as well as traditional
two-sided message passing operations. Specifically, the Portals API provides the flexibility needed for an efficient
implementation of MPI-1, which defines two-sided operations with one-sided completion semantics.

Figure 2.4 presents a graphical representation of the structures used by a target in the interpretation of a Portal
address. The process id is used to route the message to the appropriate node and is not reflected in this diagram. The
memory buffer id, called the portal id, is used as an index into the Portal table. Each element of the Portal table
identifies a match list. Each element of the match list specifies two bit patterns: a set of “don’t care” bits, and a set of
“must match” bits. In addition to the two sets of match bits, each match list element has at most one memory descriptor.
Each memory descriptor identifies a memory region and an optional event queue. The memory region specifies the
memory to be used in the operation and the event queue is used to record information about these operations.

Figure 2.5 illustrates the steps involved in translating a Portal address, starting from the first element in a match list.

6

Match List
Portal Table

Library Space
Application Space

Descriptor
Memory

Event Queue Regions
Memory

Figure 2.4: Portal Addressing Structures

If the match criteria specified in the match list entry are met and the memory descriptor list accepts the operation1, the
operation (put, get, or swap) is performed using the memory region specified in the memory descriptor. If the memory
descriptor specifies that it is to be unlinked when a threshold has been exceeded, the match list entry is removed from
the match list and the resources associated with the memory descriptor and match list entry are reclaimed. Finally, if
there is an event queue specified in the memory descriptor and the memory descriptor accepts the event, the operation
is logged in the event queue.

More
Match

Entries?

Match Entry
Get Next

Match? Drop Count
Increment

Message
Discardno

Entry

no

yes

yes

no

yes

yes

no

yes

no

yes

no

MD
Exists and
Accepts?

Operation
Perform

Queue?
Event

Unlink MD
& Match Entry

MD?
Unlink

Event?
MD Accepts

Event
Record Start

Exit

Figure 2.5: Portals Address Translation

If the match criteria specified in the match list entry are not met, or there is no memory descriptor associated with
the match list entry, or the memory descriptor associated with the match list entry rejects the operation, the address
translation continues with the next match list entry. If the end of the match list has been reached, the address translation
is aborted and the incoming requested is discarded.

2.3 Access Control
A process can control access to its Portals using an access control list. Each entry in the access control list specifies a
process id, possibly a job id, a user id, and a Portal table index. The access control list is actually an array of entries.

1Memory descriptors can reject operations because a threshold has been exceeded or because the memory region does not have sufficient space,
see Section 3.10

7

Each incoming request includes an index into the access control list (i.e., a “cookie” or hint). If the id of the process
issuing the request doesn’t match the id specified in the access control list entry or the Portal table index specified
in the request doesn’t match the Portal table index specified in the access control list entry, the request is rejected.
Process identifiers, job identifiers, user identifiers, and Portal table indexes may include wildcard values to increase
the flexibility of this mechanism.

Two aspects of this design merit further discussion. First, the model assumes that the information in a message
header, the sender’s process id, node id, user id, and job id in particular, is trustworthy. In most contexts, we assume
that the entity that constructs the header is trustworthy; however, using cryptographic techniques, we could easily
devise a protocol that would ensure the authenticity of the sender.

Second, because the access check is performed by the receiver, it is possible that a malicious process will generate
thousands of messages that will be denied by the receiver. This could saturate the network and/or the receiver, resulting
in a denial of service attack. Moving the check to the sender using capabilities, would remove the potential for this
form of attack. However, the solution introduces the complexities of capability management (exchange of capabilities,
revocation, protections, etc).

2.4 Multi-threaded Applications
The Portals API supports a generic view of multi-threaded applications. From the perspective of the Portals API, an
application program is defined by a set of processes. Each process defines a unique address space. The Portals API
defines access to this address space from other processes (using Portals addressing and the data movement operations).
A process may have one or more threads executing in its address space.

With the exception of PtlEQWait and possibly PtlEQPoll, every function in the Portals API is non-blocking and
atomic with respect to both other threads and external operations that result from data movement operations. While
individual operations are atomic, sequences of these operations may be interleaved between different threads and with
external operations. The Portals API does not provide any mechanisms to control this interleaving. It is expected that
these mechanisms will be provided by the API used to create threads.

Chapter 3

The Portals API

3.1 Naming Conventions
The Portals API defines two types of entities: functions and types. Function always start with Ptl and use mixed upper
and lower case. When used in the body of this report, function names appear in italic face, e.g., PtlInit. The functions
associated with an object type will have names that start with Ptl, followed by the two letter object type code shown
in Table 3.1. As an example, the function PtlEQAlloc allocates resources for an event queue.

Table 3.1: Object Type Codes

xx Name Section
eq Event Queue 3.11
md Memory Descriptor 3.10
me Match list Entry 3.9
ni Network Interface 3.5

Type names use lower case with underscores to separate words. Each type name starts with ptl_ and ends with
_t. When used in the body of this report, type names appear in a fixed font, e.g., ptl_match_bits_t.

Names for constants use upper case with underscores to separate words. Each constant name starts with PTL_.
When used in the body of this report, type names appear in a fixed font, e.g., PTL_OK.

The definition of named constants, function prototypes, and type definitions must be supplied in an include file
named portals3.h.

3.2 Base Types
The Portals API defines a variety of base types. These types represent a simple renaming of the base types provided
by the C programming language. In most cases these new type names have been introduced to improve type safety
and to avoid issues arising from differences in representation sizes (e.g., 16-bit or 32-bit integers).

3.2.1 Sizes
The type ptl_size_t is an unsigned 64-bit integral type used for representing sizes.

3.2.2 Handles
Objects maintained by the API are accessed through handles. Handle types have names of the form ptl_handle_xx_t,
where xx is one of the two letter object type codes shown in Table 3.1. For example, the type ptl_handle_ni_t is
used for network interface handles.

8

9

Each type of object is given a unique handle type to enhance type checking. The type, ptl_handle_any_t, can be
used when a generic handle is needed. Every handle value can be converted into a value of type ptl_handle_any_t
without loss of information.

Handles are not simple values. Every portals object is associated with a specific network interface and an identifier
for this interface (along with an object identifier) is part of the handle for the object.

The special value PTL_EQ_NONE, of type ptl_handle_eq_t, is used to indicate the absence of an event queue.
See sections 3.10.5 and 3.10.6 for uses of this value. The special value PTL_INVALID_HANDLE is used to represent an
invalid handle.

3.2.3 Indexes

The types ptl_pt_index_t and ptl_ac_index_t are integral types used for representing Portal table indexes and
access control table indexes respectively. See section 3.5.2 for limits on values of these types.

3.2.4 Match Bits

The type ptl_match_bits_t is capable of holding unsigned 64-bit integer values.

3.2.5 Network Interfaces

The type ptl_interface_t is an integral type used for identifying different network interfaces. Users will need to
consult the implementation documentation to determine appropriate values for the interfaces available. The special
value PTL_IFACE_DEFAULT identifies the default interface.

3.2.6 Identifiers

The type ptl_nid_t is an integral type used for representing node ids, ptl_pid_t is an integral type for representing
process ids, ptl_uid_t is an integral type for representing user ids, and ptl_jid_t is an integral type for representing
job ids.

The special values PTL_PID_ANY matches any process identifier, PTL_NID_ANY matches any node identifier,
PTL_UID_ANY matches any user identifier, and PTL_JID_ANY matches any job indentifier. See sections 3.9.2 and 3.12.1
for uses of these values.

3.2.7 Status Registers

Each network interface maintains an array of status registers that can be accessed using the PtlNIStatus function (see
Section 3.5.4). The type ptl_sr_index_t defines the types of indexes that can be used to access the status registers.
The only index defined for all implementations is PTL_SR_DROP_COUNT which identifies the status register that counts
the dropped requests for the interface. Other indexes (and registers) may be defined by the implementation.

The type ptl_sr_value_t defines the types of values held in status registers. This is a signed integer type. The
size is implementation dependent but must be at least 32 bits.

3.3 Return Codes

The API specifies return codes that indicate success or failure of a function call. In the case where the failure is due
to invalid arguments being passed into the function, the exact behavior of an implementation is undefined. The API
suggests error codes that provide more detail about specific invalid parameters, but an implementation is not required
to return these specific error codes. For example, an implementation is free to allow the caller to fault when given
an invalid address, rather than return PTL_SEGV. In addition, an implementation is free to map these return codes to
standard return codes where appropriate. For example, a Linux kernel-space implementation may want to map Portals
return codes to POSIX-compliant return codes.

10

3.4 Initialization and Cleanup
The Portals API includes a function, PtlInit, to initialize the library and a function, PtlFini, to cleanup after the process
is done using the library.

A child process does not inherit any Portals resources from its parent. A child process whose parent has initialized
Portals must shutdown and re-initialize Portals in order to obtain new, valid, Portals resources. If a child process fails
to shutdown and re-initialize Portals, behavior is undefined for both the parent and the child.

3.4.1 PtlInit
int PtlInit(int *max_interfaces);

The PtlInit function initializes the Portals library. PtlInit must be called at least once by a process before any thread
makes a Portals function call but may be safely called more than once.

Return Codes

PTL_OK Indicates success.

PTL_FAIL Indicates an error during initialization.

PTL_SEGV Indicates that max_interfaces is not a legal address.

Arguments

max_interfaces output On successful return, this location will hold the maximum number of
interfaces that can be initialized.

3.4.2 PtlFini
void PtlFini(void);

The PtlFini function cleans up after the Portals library is no longer needed by a process. After this function is called,
calls to any of the functions defined by the Portal API or use of the structures set up by the Portals API will result in
undefined behavior. This function should be called once and only once during termination by a process. Typically,
this function will be called in the exit sequence of a process. Individual threads should not call PtlFini when they
terminate.

3.5 Network Interfaces
The Portals API supports the use of multiple network interfaces. However, each interface is treated as an independent
entity. Combining interfaces (e.g., “bonding” to create a higher bandwidth connection) must be implemented by the
process or embedded in the underlying network. Interfaces are treated as independent entities to make it easier to
cache information on individual network interface cards.

Once initialized, each interface provides a Portal table, an access control table, and a collection of status registers.
In order to facilitate the development of portable Portals applications, a compliant implementation must provide at
least eight Portal table entries. See Section 3.9 for a discussion of updating Portal table entries using the PtlMEAttach
or PtlMEAttachAny functions. See Section 3.12 for a discussion of the initialization and updating of entries in the
access control table. See Section 3.5.4 for a discussion of the PtlNIStatus function which can be used to determine the
value of a status register.

Every other type of Portals object (e.g., memory descriptor, event queue, or match list entry) is associated with
a specific network interface. The association to a network interface is established when the object is created and is
encoded in the handle for the object.

Each network interface is initialized and shutdown independently. The initialization routine, PtlNIInit, returns a
handle for an interface object which is used in all subsequent Portals operations. The PtlNIFini function is used to

11

shutdown an interface and release any resources that are associated with the interface. Network interface handles are
associated with processes, not threads. All threads in a process share all of the network interface handles.

The Portals API also defines the PtlNIStatus function to query the status registers for a network interface, the
PtlNIDist function to determine the “distance” to another process, and the PtlNIHandle function to determine the
network interface with which an object is associated.

3.5.1 The Network Interface Limits Type

typedef struct {
int max_mes;
int max_mds;
int max_eqs;
int max_ac_index;
int max_pt_index;
int max_md_iovecs;
int max_me_list;
int max_getput_md;

} ptl_ni_limits_t;

Values of type ptl_ni_limits_t include the following members:

max_mes Maximum number of match entries that can be allocated at any one time.

max_mds Maximum number of memory descriptors that can be allocated at any one time.

max_eqs Maximum number of event queues that can be allocated at any one time.

max_ac_index Largest access control table index for this interface, valid indexes range from zero to max_ac_index,
inclusive.

max_pt_index Largest Portal table index for this interface, valid indexes range from zero to max_pt_index, inclusive.

max_md_iovecs Maximum number of io vectors for a single memory descriptor for this interface.

max_me_list Maximum number of match entries that can be attached to any Portal table index.

max_getput_md Maximum length of the local and remote memory descriptors used in the atomic swap PtlGetPut
operation.

3.5.2 PtlNIInit

int PtlNIInit(ptl_interface_t interface
ptl_pid_t pid,
ptl_ni_limits_t* desired,
ptl_ni_limits_t* actual,
ptl_handle_ni_t* ni_handle);

The PtlNIInit function is used to initialized the Portals API for a network interface. This function must be called at
least once by a process before any other operations that apply to the interface by any process or thread. For subsequent
calls to PtlNIInit from within the same process (either by different threads or the same thread), the desired limits will
be ignored and the call will return the existing NI handle.

12

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_IFACE_DUP Indicates a duplicate initialization of interface.

PTL_IFACE_INVALID Indicates that interface is not a valid network interface.

PTL_NO_SPACE Indicates that there is insufficient memory to initialize the interface.

PTL_PID_INVALID Indicates that pid is not a valid process id.

PTL_SEGV Indicates that actual or ni_handle is not a legal address.

Arguments

interface input Identifies the network interface to be initialized. (See section 3.2.5 for a discussion of
values used to identify network interfaces.)

pid input Identifies the desired process id (for well known process ids). The value PTL_PID_ANY
may be used to have the process id assigned by the underlying library.

desired input If non-NULL, points to a structure that holds the desired limits.
actual output if non-NULL, on successful return, the location pointed to by actual will hold the

actual limits.
ni_handle output On successful return, this location will hold a handle for the interface.

Discussion: The use of desired is implementation dependent. In particular, an implementation may
choose to ignore this argument

The desired limits are used to offer a hint to an implementation as to the amount of resources needed, and the imple-
mentation returns the actual limits available for use. In the case where an implementation does not have any pre-defined
limits, it is free to return the largest possible value permitted by the corresponding type (eg. INT_MAX). A quality
implementation will enforce the limits that are returned and take the appropriate action when limits are exceeded,
such as using the PTL_NO_SPACE return code. The caller is permitted to use maximum values for the desired fields to
indicate that the limit should be determined by the implementation.

3.5.3 PtlNIFini
int PtlNIFini(ptl_handle_ni_t ni_handle);

The PtlNIFini function is used to release the resources allocated for a network interface. Once the PtlNIFini operation
has been started, the results of pending API operations (e.g., operations initiated by another thread) for this interface
are undefined. Similarly, the effects of incoming operations (puts and gets) or return values (acknowledgements and
replies) for this interface are undefined.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

Arguments

interface input A handle for the interface to shutdown.

13

3.5.4 PtlNIStatus
int PtlNIStatus(ptl_handle_ni_t ni_handle,

ptl_sr_index_t status_register,
ptl_sr_value_t* status);

The PtlNIStatus function returns the value of a status register for the specified interface. (See section 3.2.7 for more
information on status register indexes and status register values.)

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_SR_INDEX_INVALID Indicates that status_register is not a valid status register.

PTL_SEGV Indicates that status is not a legal address.

Arguments

ni_handle input A handle for the interface to use.
status_register input An index for the status register to read.

status output On successful return, this location will hold the current value of the status register.

Discussion: The only status register that must be defined is a drop count register (PTL_SR_DROP_COUNT).
Implementations may define additional status registers. Identifiers for the indexes associated with these
registers should start with the prefix PTL_SR_.

3.5.5 PtlNIDist
int PtlNIDist(ptl_handle_ni_t ni_handle,

ptl_process_id_t process,
unsigned long* distance);

The PtlNIDist function returns the distance to another process using the specified interface. Distances are only defined
relative to an interface. Distance comparisons between different interfaces on the same process may be meaningless.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_PROCESS_INVALID Indicates that process is not a valid process identifier.

PTL_SEGV Indicates that distance is not a legal address.

Arguments

ni_handle input A handle for the interface to use.
process input An identifier for the process whose distance is being requested.
distance output On successful return, this location will hold the distance to the remote process.

Discussion: This function should return a static measure of distance. Examples include minimum latency,
the inverse of available bandwidth, or the number of switches between the two endpoints.

14

3.5.6 PtlNIHandle
int PtlNIHandle(ptl_handle_any_t handle,

ptl_handle_ni_t* ni_handle);

The PtlNIHandle function returns a handle for the network interface with which the object identified by handle is
associated. If the object identified by handle is a network interface, this function returns the same value it is passed.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_HANDLE_INVALID Indicates that handle is not a valid handle.

PTL_SEGV Indicates that ni_handle is not a legal address.

Arguments

handle input A handle for the object.
ni_handle output On successful return, this location will hold a handle for the network interface asso-

ciated with handle.

Discussion: Every handle should encode the network interface and the object id relative to this handle.
Both are presumably encoded using integer values.

3.6 User Identification

Every process runs on behalf of a user.

3.6.1 PtlGetUid
int PtlGetUid(ptl_handle_ni_t ni_handle,

ptl_uid_t* uid);

Return Codes

PTL_OK Indicates success.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_SEGV Indicates that uid is not a legal address.

Arguments

ni_handle input A network interface handle.
uid output On successful return, this location will hold the user id for the calling process.

Discussion: Note that user identifiers are dependent on the network interface(s). In particular, if a node
has multiple interfaces, a process may have multiple user identifiers.

15

3.7 Process Identification
Processes that use the Portals API, can be identified using a node id and process id. Every node accessible through a
network interface has a unique node identifier and every process running on a node has a unique process identifier. As
such, any process in the computing system can be uniquely identified by its node id and process id.

The Portals API defines a type, ptl_process_id_t for representing process ids, and a function, PtlGetId, which
can be used to obtain the id of the current process.

Discussion: The portals API does not include thread identifiers. Messages are delivered to processes
(address spaces) not threads (contexts of execution).

3.7.1 The Process Id Type
typedef struct {

ptl_nid_t nid;
ptl_pid_t pid;

} ptl_process_id_t;

The ptl_process_id_t type uses two identifiers to represent a process id: a node id and a process id.

3.7.2 PtlGetId
int PtlGetId(ptl_handle_ni_t ni_handle,

ptl_process_id_t* id);

Return Codes

PTL_OK Indicates success.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_SEGV Indicates that id is not a legal address.

Arguments

ni_handle input A network interface handle.
id output On successful return, this location will hold the id for the calling process.

Discussion: Note that process identifiers are dependent on the network interface(s). In particular, if a
node has multiple interfaces, it may have multiple node identifiers.

3.8 Process Aggregation
It is useful in the context of a parallel machine to represent all of the processes in a parallel job through an aggregate
identifier. The Portals API provides a mechanism for supporting such job identifiers for these systems. However, job
identifiers need not be supported by all systems. In order to be fully supported, job identifiers must be included as a
trusted part of a message header, as described in Section 2.3.

The job id is an opaque identifier shared between all of the distributed processes of an application running on a
parallel machine. All application processes and job-specific support programs, such as the parallel job launcher, share
the same job id. This id is assigned by the runtime system upon job launch, and is guaranteed to be unique among
application jobs across the entire distributed system. Individual serial process may be assigned a job id that is not
shared with any other processes in the system or the constant PTL_JID_NONE can be returned.

Implementations that do not support job ids should return the value PTL_JID_NONE.

16

3.8.1 The Job Id Type

int PtlGetJid(ptl_handle_ni_t ni_handle,
plt_jid_t *jid);

Return Codes

PTL_OK Indicates success.

PTL_NI_INVALID Indicates the ni_handle is not a valid network interface handle.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_SEGV Indicates that jid is not a legal address.

Arguments

ni_handle input A network interface handle.
jid output On successful return, this location will hold the job id for the calling process.

3.9 Match List Entries and Match Lists

A match list is a chain of match list entries. Each match list entry includes a memory descriptor and a set of match
criteria. The match criteria can be used to reject incoming requests based on process id or the match bits provided in
the request. A match list is created using the PtlMEAttach or PtlMEAttachAny functions, which create a match list
consisting of a single match list entry, attach the match list to the specified Portal index, and return a handle for the
match list entry. Match entries can be dynamically inserted and removed from a match list using the PtlMEInsert and
PtlMEUnlink functions.

3.9.1 Match Entry Type Definitions

typedef enum { PTL_RETAIN, PTL_UNLINK } ptl_unlink_t;
typedef enum { PTL_INS_BEFORE, PTL_INS_AFTER } ptl_ins_pos_t;

Values of the type ptl_ins_pos_t are used to control where a new item is inserted. The value PTL_INS_BEFORE is
used to insert the new item before the current item or before the head of the list. The value PTL_INS_AFTER is used to
insert the new item after the current item or after the last item in the list.

3.9.2 PtlMEAttach

int PtlMEAttach(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink,
ptl_ins_pos_t position,
ptl_handle_me_t* me_handle);

The PtlMEAttach function creates a match list consisting of a single entry and attaches this list to the Portal table for
ni_handle.

17

Return Codes

PTL_OK Indicates success.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_PT_INDEX_INVALID Indicates that pt_index is not a valid Portal table index.

PTL_PROCESS_INVALID Indicates that matchid is not a valid process identifier.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL_ME_LIST_TOO_LONG Indicates that the resulting match list is too long. The maximum length for a match
list is defined by the interface.

Arguments

ni_handle input A handle for the interface to use.
pt_index input The Portal table index where the match list should be

attached.
match_id input Specifies the match criteria for the process id of

the requestor. The constants PTL_PID_ANY and
PTL_NID_ANY can be used to wildcard either of the ids
in the ptl_process_id_t structure.

match_bits, ignore_bits input Specify the match criteria to apply to the match bits in
the incoming request. The ignore_bits are used to
mask out insignificant bits in the incoming match bits.
The resulting bits are then compared to the match list
entry’s match bits to determine if the incoming request
meets the match criteria.

unlink input Indicates the match list entry should be unlinked when
the memory descriptor associated with this match list
entry is unlinked. (Note, the check for unlinking a
match entry only occurs when the memory descriptor
is unlinked.)

position input Indicates whether the new match entry should be
prepended or appended to the existing match list.
If there is no existing list, this argument is ignored
and the new match entry becomes the only entry
in the list. Allowed constants: PTL_INS_BEFORE,
PTL_INS_AFTER.

me_handle output On successful return, this location will hold a handle
for the newly created match list entry.

3.9.3 PtlMEAttachAny
int PtlMEAttachAny(ptl_handle_ni_t ni_handle,

ptl_pt_index_t *pt_index,
ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink,
ptl_handle_me_t* me_handle);

The PtlMEAttachAny function creates a match list consisting of a single entry and attaches this list to an unused Portal
table entry for interface.

18

Return Codes

PTL_OK Indicates success.

PTL_NI_INVALID Indicates that interface is not a valid network interface handle.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_PROCESS_INVALID Indicates that matchid is not a valid process identifier.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL_PT_FULL Indicates that there are no free entries in the Portal table.

Arguments

ni_handle input A handle for the interface to use.
pt_index output On succesful return, this location will hold the Portal

index where the match list has been attached.
match_id,match_bits,ignore_bits,unlink input See the discussion for PtlMEAttach.

me_handle output On successful return, this location will hold a handle
for the newly created match list entry.

3.9.4 PtlMEInsert
int PtlMEInsert(ptl_handle_me_t base,

ptl_process_id_t match_id,
ptl_match_bits_t match_bits,
ptl_match_bits_t ignore_bits,
ptl_unlink_t unlink,
ptl_ins_pos_t position,
ptl_handle_me_t* me_handle);

The PtlMEInsert function creates a new match list entry and inserts this entry into the match list containing base.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_PROCESS_INVALID Indicates that matchid is not a valid process identifier.

PTL_ME_INVALID Indicates that base is not a valid match entry handle.

PTL_ME_LIST_TOO_LONG Indicates that the resulting match list is too long. The maximum length for a match
list is defined by the interface.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the match entry.

Arguments

base input A handle for a match entry. The new match entry will
be inserted immediately before or immediately after
this match entry.

match_id, match_bits, ignore_bits, unlink input See the discussion for PtlMEAttach
position input Indicates whether the new match entry should be in-

serted before or after the base entry. Allowed con-
stants: PTL_INS_BEFORE, PTL_INS_AFTER.

me_handle input See the discussion for PtlMEAttach.

19

3.9.5 PtlMEUnlink
int PtlMEUnlink(ptl_handle_me_t me_handle);

The PtlMEUnlink function can be used to unlink a match entry from a match list. This operation also releases any
resources associated with the match entry (possibly including the associated memory descriptor). It is an error to use
the match entry handle after calling PtlMEUnlink.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ME_INVALID Indicates that me_handle is not a valid match entry handle.

PTL_ME_IN_USE Indicates that the ME has pending operations and cannot be unlinked.

Arguments

me_handle input A handle for the match entry to be unlinked.

3.10 Memory Descriptors

A memory descriptor contains information about a region of a process’ memory and optionally an event queue where
information about the operations performed on the memory descriptor are recorded. The Portals API provides two
operations to create memory descriptors: PtlMDAttach, and PtlMDBind; an operation to update a memory descriptor,
PtlMDUpdate; and an operation to unlink and release the resources associated with a memory descriptor, PtlMDUn-
link.

3.10.1 The Memory Descriptor Type
typedef struct {

void* start;
ptl_size_t length;
int threshold;
unsigned int max_size;
unsigned int options;
void* user_ptr;
ptl_handle_eq_t eq_handle;

} ptl_md_t;

The ptl_md_t type defines the visible parts of a memory descriptor. Values of this type are used to initialize and
update the memory descriptors.

Members

start, length Specify the memory region associated with the memory descriptor. The start member specifies the
starting address for the memory region and the length member specifies the length of the region. The start
member can be NULL provided that the length member is zero. (Zero length buffers are useful to record events.)
There are no alignment restrictions on the starting address or the length of the region; although, unaligned
messages may be slower (i.e., lower bandwidth and/or longer latency) on some implementations.

20

threshold Specifies the maximum number of operations that can be performed on the memory descriptor. An opera-
tion is any action that could possibly generate an event pair (see Section 3.11.1 for the different types of events).
In the usual case, the threshold value is decremented for each operation on the memory descriptor. When the
threshold value is zero, the memory descriptor is inactive, and does not respond to operations. A memory de-
scriptor can have an initial threshold value of zero to allow for manipulation of an inactive memory descriptor
by the local process. A threshold value of PTL_MD_THRESH_INF indicates that there is no bound on the number
of operations that may be applied to a memory descriptor. Note that local operations (e.g., PtlMDUpdate) are
not applied to the threshold count.

max_size Specifies the largest incoming request that the memory descriptor will respond to. When the unused portion
of a memory descriptor (length - local offset) falls below this value, the memory descriptor becomes inactive
and does not respond to further operations. This value is only used if the PTL_MD_MAX_SIZE option is specified.

options Specifies the behavior of the memory descriptor. The following options can be selected: enable put operations
(yes or no), enable get operations (yes or no), offset management (local or remote), message truncation (yes or
no), acknowledgement (yes or no), use scatter/gather vectors, disable start events, and disable end events. Values
for this argument can be constructed using a bitwise or of the following values:

PTL_MD_OP_PUT Specifies that the memory descriptor will respond to put operations. By default, memory
descriptors reject put operations.

PTL_MD_OP_GET Specifies that the memory descriptor will respond to get operations. By default, memory
descriptors reject get operations.

PTL_MD_MANAGE_REMOTE Specifies that the offset used in accessing the memory region is provided by
the incoming request. By default, the offset is maintained locally. When the offset is maintained locally,
the offset is incremented by the length of the request so that the next operation (put and/or get) will access
the next part of the memory region.

PTL_MD_TRUNCATE Specifies that the length provided in the incoming request can be reduced to match the
memory available in the region. (The memory available in a memory region is determined by subtracting
the offset from the length of the memory region.) By default, if the length in the incoming operation is
greater than the amount of memory available, the operation is rejected.

PTL_MD_ACK_DISABLE Specifies that an acknowledgement should not be sent for incoming put opera-
tions, even if requested. By default, acknowledgements are sent for put operations that request an ac-
knowledgement. Acknowledgements are never sent for get operations. The data sent in the reply serves as
an implicit acknowledgement.

PTL_MD_IOVEC Specifies that the start argument is a pointer to an array of type ptl_md_iovec_t (see
Section 3.10.2) and the length argument is the length of the array. This allows for a gather/scatter capa-
bility for memory descriptors. A scatter/gather memory descriptor behaves exactly as a memory descriptor
that describes a single virtually contiguous region of memory. The local offset, truncation semantics, etc.,
are identical.

PTL_MD_MAX_SIZE Specifies that the max_size field in the memory descriptor is to be used.

PTL_MD_EVENT_START_DISABLE Specifies that this memory descriptor should not generate
PTL_EVENT_*_START events.

PTL_MD_EVENT_END_DISABLE Specifies that this memory descriptor should not generate
PTL_EVENT_*_END events.

Note: It is not considered an error to have a memory descriptor that does not respond to either put or get operations:
Every memory descriptor responds to reply operations. Nor is it considered an error to have a memory descriptor that
responds to both put and get operations. In fact, a memory descriptor used in a getput operation must be configured to
respond to both put and get operations.

21

user_ptr A user-specified value that is associated with the memory descriptor. The value does not need to be a pointer,
but must fit in the space used by a pointer. This value (along with other values) is recorded in events associated
with operations on this memory descriptor.1

eq_handle A handle for the event queue used to log the operations performed on the memory region. If this argument
is PTl_EQ_NONE, operations performed on this memory descriptor are not logged.

3.10.2 The Memory Descriptor IO Vector Type
typedef struct {

void* iov_base;
ptl_size_t iov_len;

} ptl_md_iovec_t;

The ptl_md_iovec_t type is used to describe gather/scatter buffers of a memory descriptor in conjunction with the
PTL_MD_IOVEC option. The ptl_md_iovec_t is intended to be a type definition of the struct iovec type on systems
that already support this type.

3.10.3 PtlMDAttach
int PtlMDAttach(ptl_handle_me_t me_handle,

ptl_md_t md,
ptl_unlink_t unlink_op,
ptl_handle_md_t* md_handle);

Values of the type ptl_unlink_t are used to control whether an item is unlinked from a list. The value PTL_UNLINK
enables unlinking. The value PTL_RETAIN disables unlinking.

The PtlMDAttach operation is used to create a memory descriptor and attach it to a match list entry. An error code
is returned if this match list entry already has an associated memory descriptor.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ME_IN_USE Indicates that me_handle already has a memory descriptor attached.

PTL_ME_INVALID Indicates that me_handle is not a valid match entry handle.

PTL_MD_ILLEGAL Indicates that md is not a legal memory descriptor. This may happen because the memory
region defined in md is invalid or because the network interface associated with the eq_handle in md is not the
same as the network interface associated with me_handle.

PTL_EQ_INVALID Indicates that the event queue associated with md is not valid.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the memory descriptor.

PTL_SEGV Indicates that md_handle is not a legal address.

1Tying the memory descriptor to a user-defined value can be useful when multiple memory descriptor share the same event queue or when
the memory descriptor needs to be associated with a data structure maintained by the process outside of the Portals library. For example, an MPI
implementation can set the user_ptr argument to the value of an MPI Request. This direct association allows for processing of memory descriptor’s
by the MPI implementation without a table lookup or a search for the appropriate MPI Request.

22

Arguments

me_handle input A handle for the match entry that the memory descriptor will be associated with.
md input Provides initial values for the user-visible parts of a memory descriptor. Other than

its use for initialization, there is no linkage between this structure and the memory
descriptor maintained by the API.

unlink_op input A flag to indicate whether the memory descriptor is unlinked when it becomes inac-
tive, either because the operation threshold drops to zero or because the max_size
threshold value has been exceeded. (Note, the check for unlinking a memory descrip-
tor only occurs after a the completion of a successful operation. If the threshold is
set to zero during initialization or using PtlMDUpdate, the memory descriptor is not
unlinked.)

md_handle output On successful return, this location will hold a handle for the newly created memory
descriptor. The handle argument can be NULL, in which case the handle will not be
returned.

3.10.4 PtlMDBind
int PtlMDBind(ptl_handle_ni_t ni_handle,

ptl_md_t md,
ptl_unlink_t unlink_op,
ptl_handle_md_t* md_handle);

The PtlMDBind operation is used to create a “free floating” memory descriptor, i.e., a memory descriptor that is not
associated with a match list entry.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_MD_ILLEGAL Indicates that md is not a legal memory descriptor. This may happen because the memory
region defined in md is invalid or because the network interface associated with the eq_handle in md is not the
same as the network interface, ni_handle.

PTL_EQ_INVALID Indicates that the event queue associated with md is not valid.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the memory descriptor.

PTL_SEGV Indicates that md_handle is not a legal address.

Arguments

ni_handle input A handle for the network interface with which the memory descriptor will be associ-
ated.

md, unlink_op input See the discussion for PtlMDAttach.
md_handle output On successful return, this location will hold a handle for the newly created memory

descriptor. The handle argument must be a valid address and cannot be NULL.

3.10.5 PtlMDUnlink
int PtlMDUnlink(ptl_handle_md_t md_handle);

23

The PtlMDUnlink function unlinks the memory descriptor from any match list entry it may be linked to and releases
the resources associated with a memory descriptor. (This function does not free the memory region associated with
the memory descriptor.) This function also releases the resources associated with a floating memory descriptor. Only
memory descriptors with no pending operations may be unlinked. Explicitly unlinking a memory descriptor via
this function call has the same behavior as a memory descriptor that has been automatically unlinked, except that a
PTL_EVENT_UNLINK event is not generated.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_MD_INVALID Indicates that md_handle is not a valid memory descriptor handle.

PTL_MD_IN_USE Indicates that md_handle has pending operations and cannot be unlinked.

Arguments

md_handle input A handle for the memory descriptor to be released.

3.10.6 PtlMDUpdate
int PtlMDUpdate(ptl_handle_md_t md_handle,

ptl_md_t* old_md,
ptl_md_t* new_md,
ptl_handle_eq_t eq_handle);

The PtlMDUpdate function provides a conditional, atomic update operation for memory descriptors. The memory
descriptor identified by md_handle is only updated if the event queue identified by eq_handle is empty. The intent
is to only enable updates to the memory descriptor when no new messages have arrived since the last time the queue
was checked.

If new is not NULL the memory descriptor identified by md_handle will be updated to reflect the values in the
structure pointed to by new if eq_handle has the value PTL_EQ_NONE or if the event queue identified by eq_handle
is empty. If old is not NULL, the current value of the memory descriptor identified by md_handle is recorded in the
location identified by old.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_MD_NO_UPDATE Indicates that the update was not performed because eq_handle was not empty.

PTL_MD_INVALID Indicates that md_handle is not a valid memory descriptor handle.

PTL_MD_ILLEGAL Indicates that the value pointed to by new is not a legal memory descriptor (e.g., the memory
region specified by the memory descriptor may be invalid).

PTL_EQ_INVALID Indicates that eq_handle is not a valid event queue handle.

PTL_SEGV Indicates that new or old is not a legal address.

24

Arguments

md_handle input A handle for the memory descriptor to update.
old_md output If old_md is not the value NULL, the current value of the memory descriptor will be

stored in the location identified by old_md.
new_md input If new_md is not the value NULL, this argument provides the new values for the memory

descriptor, if the update is performed.
eq_handle input A handle for an event queue used to predicate the update. If eq_handle is equal

to PTL_EQ_NONE, the update is performed unconditionally. Otherwise, the update is
performed if and only if eq_handle is empty. If the update is not performed, the
function returns the value PTL_NO_UPDATE. (Note, the eq_handle argument does not
need to be the same as the event queue associated with the memory descriptor.)

The conditional update can be used to ensure that the memory descriptor has not changed between the time it was
examined and the time it is updated. In particular, it is needed to support an MPI implementation where the activity of
searching an unexpected message queue and posting a receive must be atomic.

3.10.7 Thresholds and Unlinking

The value of the threshold is checked before each operation. If the threshold is nonzero, it is decremented after the
operation is initiated. A threshold that has been decremented to zero may still have operations that are pending. If
the MD is configured to automatically unlink, the unlink event will not be generated until all pending operations have
been completed. Binding a new MD to an ME is only permitted after the MD has been explicitly unlinked or after an
unlink event has been posted.

3.11 Events and Event Queues

Event queues are used to log operations performed on memory descriptors. They can also be used to hold acknowl-
edgements for completed put operations and to note when the data specified in a put operation has been sent (i.e.,
when it is safe to reuse the buffer that holds this data). Multiple memory descriptors can share a single event queue.
An event queue may have an optional event handler associated with it. If an event handler exists, it will be run for
each event that is deposited into the event queue.

In addition to the ptl_handle_eq_t type, the Portals API defines two types associated with events: The
ptl_event_kind_t type defines the kinds of events that can be stored in an event queue. The ptl_event_t type
defines a structure that holds the information associated with an event.

The Portals API also provides five functions for dealing with event queues: The PtlEQAlloc function is used to
allocate the API resources needed for an event queue, the PtlEQFree function is used to release these resources, the
PtlEQGet function can be used to get the next event from an event queue, the PtlEQWait function can be used to block
a process (or thread) until an event queue has at least one event, and the PtlEQPoll function can be used to test or wait
on multiple event queues.

3.11.1 Kinds of Events
typedef enum {

PTL_EVENT_GET_START, PTL_EVENT_GET_END,
PTL_EVENT_PUT_START, PTL_EVENT_PUT_END,
PTL_EVENT_GETPUT_START, PTL_EVENT_GETPUT_END,
PTL_EVENT_REPLY_START, PTL_EVENT_REPLY_END,
PTL_EVENT_SEND_START, PTL_EVENT_SEND_END,
PTL_EVENT_ACK

} ptl_event_kind_t;

The Portals API defines fourteen types of events that can be logged in an event queue:

25

PTL_EVENT_PUT_START A remote put operation has been started on the memory descriptor. The memory region
associated with this descriptor should should be considered volatile until the corresponding END or event is
logged.

PTL_EVENT_PUT_END A previously initiated put operation completed successfully. The underlying layers will
not alter the memory (on behalf of this operation) once this event has been logged.

PTL_EVENT_GETPUT_START A remote getput operation has been started on the memory descriptor. The mem-
ory region associated with this descriptor should not be altered until the corresponding END event is logged.

PTL_EVENT_GETPUT_END A previously initiated getput operation completed successfully.

PTL_EVENT_REPLY_START A reply operation has been started on the memory descriptor.

PTL_EVENT_REPLY_END A previously initiated reply operation has completed successfully . This event is
logged after the data (if any) from the reply has been written into the memory descriptor.

PTL_EVENT_SEND_START An outgoing send operation has been started. The memory region associated with
this descriptor should not be altered until the corresponding END or event is logged.

PTL_EVENT_SEND_END A previously initiated send operation has completed successfully. This event is logged
after the entire buffer has been sent and it is safe for the caller to reuse the buffer.

PTL_EVENT_ACK An acknowledgement was received. This event is logged when the acknowledgement is received

3.11.2 Event Ordering
As implied by the naming convention, start events must be delivered before end events for a given operation. The
Portals API also guarantees that when a process initiates two operations on a remote process, the operations will be
started on the remote process in the same order that they were initiated on the origin process. As an example, if
process A intitates two put operations, x and y, on process B, the Portals API guarantees that process A will receive
the PTL_EVENT_SEND_START events for x and y in the same order that process B receives the PTL_EVENT_PUT_START
events for x and y.

Note that memory descriptors that have chosen to ignore start or end events using the
MD_EVENT_START_DISABLE or MD_EVENT_END_DISABLE options are still subject to ordering constraints. Even
if the destination memory descriptors for messages x and y have chosen to disable all events, messages x and y must
still traverse the Portals data structures (eg. the match list) in the order in which they were initiated.

3.11.3 Failure Notification
Operations may fail to complete successfully; however, unless the node itself fails, every operation that is started
will eventually complete. While an operation is in progress, the memory associated with the operation should not
be viewed (in the case of a put or a reply) or altered (in the case of a send or get). Operation completion, whether
successful or unsuccessful, is final. That is, when an operation completes, the memory associated with the operation
will no longer be read or altered by the operation. A network interface can use the integral type ptl_ni_fail_t to
define specific information regarding the failure of the operation and record this information in the ni_fail_type
field of an event. The constant PTL_NI_OK should be used in successful start and end events to indicate that there has
been no failure.

3.11.4 The Event Type
typedef struct {

ptl_event_kind_t type;
ptl_process_id_t initiator;
ptl_uid_t uid;
ptl_jid_t jid;

26

ptl_pt_index_t pt_index;
ptl_match_bits_t match_bits;
ptl_size_t rlength;
ptl_size_t mlength;
ptl_size_t offset;
ptl_handle_md_t md_handle;
ptl_md_t md;
ptl_hdr_data_t hdr_data;
ptl_seq_t link;
ptl_ni_fail_t ni_fail_type;
volatile ptl_seq_t sequence;

} ptl_event_t;

An event structure includes the following members:

type Indicates the type of the event.

initiator The id of the initiator.

pt_index The Portal table index specified in the request.

match_bits A copy of the match bits specified in the request. See section 3.9 for more information on match bits.

rlength The length (in bytes) specified in the request.

mlength The length (in bytes) of the data that was manipulated by the operation. For truncated operations, the
manipulated length will be the number of bytes specified by the memory descriptor (possibly with an offset)
operation. For all other operations, the manipulated length will be the length of the requested operation.

offset Is the displacement (in bytes) into the memory region that the operation used. The offset can be determined by
the operation (see Section 3.13) for a remote managed memory descriptor, or by the local memory descriptor
(see Section 3.10). The offset and the length of the memory descriptor can be used to deterimine if the max_size
has been exceeded.

md_handle Is the handle to the memory descriptor associated with the event.

md Is the state of the memory descriptor immediately after the event has been processed. In particular, the threshold
field in md will reflect the state of the threshold after the operation occurred.

hdr_data 64 bits of out-of-band user data (see Section 3.13.2).

link The link member is used to link START events with the END event that signifies completion of the operation. The
link member will be the same for the two events associated with an operation. The link member is also used to
link an UNLINK event with the event that caused the memory descriptor to be unlinked.

ni_fail_type Is used to convey the failure of an operation. See Section 3.11.3.

sequence The sequence number for this event. Sequence numbers are unique to each event.

Discussion: The sequence member is the last member and is volatile to support SMP implementations.
When an event structure is filled in, the sequence member should be written after all other members have
been updated. Moreover, a memory barrier should be inserted between the updating of other members
and the updating of the sequence member.

3.11.5 The Event Queue Handler Type
typedef void (*ptl_eq_handler_t)(ptl_event_t *event);

The ptl_eq_handler_t type is used to represent event handler functions.

27

3.11.6 PtlEQAlloc
int PtlEQAlloc(ptl_handle_ni_t ni_handle,

ptl_size_t count,
ptl_eq_handler_t eq_handler,
ptl_handle_eq_t* eq_handle);

The PtlEQAlloc function is used to build an event queue.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the event queue.

PTL_SEGV Indicates that eq_handle is not a legal address.

Arguments

ni_handle input A handle for the interface with which the event queue will be associated.
count input A hint as to the number of events to be stored in the event queue. An implementation

may provide space for more than the requested number of event queue slots.
eq_handler input A handler function that runs when an event is deposited into the event queue. The

constant value PTL_EQ_HANDLER_NONE can be used to indicate that no event handler
is desired.

eq_handle output On successful return, this location will hold a handle for the newly created event
queue.

3.11.7 Event Queue Handler Semantics
The event queue handler, if specified, runs for each event that is deposited into the event queue. The handler is supplied
with a pointer to the event that triggered the handler invocation. The handler is invoked at some time between when
the event is deposited into the event queue by the underlying communication system, and the return of a successful
PtlEQGet, PtlEQWait, or PtlEQPoll operation. This implies that if handler is not PTL_EQ_HANDLER_NONE, PtlEQGet,
PtlEQWait, or PtlEQPoll must be called for each event in the queue.

Event handlers may have implementation specific restrictions. In general, handlers must:

� not block,

� not make system calls,

� be reentrant

� not call PtlEQWait, PtlEQGet, or PtlEQPoll

� not perform I/O operations

� be allowed to call the data movement functions (PtlPut, PtlPutRegion, PtlGet, PtlGetRegion, PtlGetPut).

Discussion: An event handler can be called by the implementation when delivering an event, or by the
Portals library when an event is received. In the former case, the implementation must ensure that the
address mappings are properly set up for the handler to run. The handler belongs to the address space of
the execution thread that called PtlEQAlloc. When run, the handler should not receive any privileges it
would not have had, if run by the caller of PtlEQAlloc.

28

If handlers are implemented inside the Portals library they must be called before PtlEQGet, PtlEQWait(),
or PtlEQPoll returns with a status of PTL_OK or PTL_EQ_DROPPED. Independent of the implementa-
tion, after a successful handler run, the corresponding event in the event queue is removed.

Behavior is undefined if the handler argument to PtlEQAlloc is not PTL_EQ_HANDLER_NONE, but
PtlEQGet, PtlEQWait, or PtlEQPoll are not called for every event in the event queue. Behavior is also
undefined if a handler does not follow the implementation specific restrictions, for example if a handler
blocks.

3.11.8 PtlEQFree
int PtlEQFree(ptl_handle_eq_t eq_handle);

The PtlEQFree function releases the resources associated with an event queue. It is up to the user to insure that no
memory descriptors are associated with the event queue once it is freed.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_EQ_INVALID Indicates that eq_handle is not a valid event queue handle.

Arguments

eq_handle input A handle for the event queue to be released.

3.11.9 PtlEQGet
int PtlEQGet(ptl_handle_eq_t eq_handle,

ptl_event_t* event);

The PTLEQGet function is a nonblocking function that can be used to get the next event in an event queue. If an event
handler is associated with the event queue, then the handler will run before this function returns successfully. The
event is removed from the queue.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one event between this event and
the last event obtained (using PtlEQGet, PtlEQWait, or PtlEQPoll) from this event queue has been dropped due
to limited space in the event queue.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_EQ_EMPTY Indicates that eq_handle is empty or another thread is waiting on PtlEQWait.

PTL_EQ_INVALID Indicates that eq_handle is not a valid event queue handle.

PTL_SEGV Indicates that event is not a legal address.

Arguments

eq_handle input A handle for the event queue.
event output On successful return, this location will hold the values associated with the next

event in the event queue.

29

3.11.10 PtlEQWait
int PtlEQWait(ptl_handle_eq_t eq_handle,

ptl_event_t* event);

The PTLEQWait function can be used to block the calling process (thread) until there is an event in an event queue. If
an event handler is associated with the event queue, then the handler will run before this function returns successfully.
This function returns the next event in the event queue and removes this event from the queue. In the event that
multiple threads are waiting on the same event queue, PtlEQWait is guaranteed to wake exactly one thread, but the
order in which they are awakened is not specified.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one event between this event and
the last event obtained (using PtlEQGet, PtlEQWait, or PtlEQPoll) from this event queue has been dropped due
to limited space in the event queue.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_EQ_INVALID Indicates that eq_handle is not a valid event queue handle.

PTL_SEGV Indicates that event is not a legal address.

Arguments

eq_handle input A handle for the event queue to wait on. The calling process (thread) will be blocked
until the event queue is not empty.

event output On successful return, this location will hold the values associated with the next event
in the event queue.

3.11.11 PtlEQPoll
int PtlEQPoll(ptl_handle_eq_t* eq_handles,

int size,
int timeout,
ptl_event_t* event,
int* which);

The PtlEQPoll function can be used by the calling process to look for an event from a set of event queues. Should an
event arrive on any of the queues contained in the array of event queue handles, the event will be returned in event and
which will contain the index of the event queue from which the event was taken. If an event handler is associated with
the event queue, then the handler will run before this function returns successfully. PtlEQPoll provides a timeout to
allow applications to poll, block for a fixed period, or block indefinitely. PtlEQPoll is sufficiently general to implement
both PtlEQGet and PtlEQWait, but these functions have been retained in the API for backward compatibility.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one event between this event and
the last event obtained from the event queue indicated by which has been dropped due to limited space in the
event queue.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_EQ_INVALID Indicates that one or more of the event queue handles is not a valid.

30

PTL_SEGV Indicates that event or which is not a legal address.

PTL_EQ_EMPTY Indicates that the timeout has been reached and all of the event queues are empty.

Arguments

eq_handles input An array of event queue handles.
size input Length of the array.

timeout input Time in milliseconds to wait for an event to occur on one of the event queue handles.
The constant PTL_TIME_FOREVER can be used to indicate an inifinite timeout.

event output On successful return (PTL_OK or PTL_EQ_DROPPED), this location will hold the values
associated with the next event in the event queue.

which output On successful return, this location will contain the index of the event queue from
which the event was taken.

3.11.12 Event Semantics
The split event sequence is needed to support unreliable networks and/or networks that packetize. The start/end
sequence is needed to support networks that packetize where the completion of transfers may not be ordered with
initiation of transfers. An implementation is free to implement these event sequences in any way that meets the ordering
semantics. For example, an implementation for a network that is reliable and that preserves message ordering (or does
not packetize) may generate a start/end event pair at the completion of the transfer. In fact, since the information in
the start/end events is identical, except for the link field, a correct implementation may generate a single event that the
EQ test/wait library function turns into an event pair.

All of the members of the ptl_event_t structure retrurned from PtlEQGet and PtlEQWait must be filled in with
valid information. An implementation may not leave any field in an event unset.

3.12 The Access Control Table
Processes can use the access control table to control which processes are allowed to perform operations on Portal table
entries. Each communication interface has a Portal table and an access control table. The access control table for
the default interface contains an entry at index zero that allows all processes with the same user id to communicate.
Entries in the access control table can be manipulated using the PtlACEntry function.

3.12.1 PtlACEntry
int PtlACEntry(ptl_handle_ni_t ni_handle,

ptl_ac_index_t ac_index,
ptl_process_id_t match_id,
ptl_uid_t user_id,
ptl_jid_t job_id,
ptl_pt_index_t pt_index);

The PtlACEntry function can be used to update an entry in the access control table for an interface. For those imple-
mentations that do not support job identifiers, the job_id argument is ignored.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NI_INVALID Indicates that ni_handle is not a valid network interface handle.

PTL_AC_INDEX_INVALID Indicates that ac_index is not a valid access control table index.

31

PTL_PROCESS_INVALID Indicates that match_id is not a valid process identifier.

PTL_PT_INDEX_INVALID Indicates that pt_index is not a valid Portal table index.

Arguments

ni_handle input Identifies the interface to use.
ac_index input The index of the entry in the access control table to update.
match_id input Identifies the process(es) that are allowed to perform operations. The constants

PTL_PID_ANY and PTL_NID_ANY can be used to wildcard either of the ids in the
ptl_process_id_t structure.

user_id input Identifies the user that is allowed to perform operations. The value PTL_UID_ANY can
be used to wildcard the user.

job_id input Identifes the collection of processes allowed to perform an operation. The value
PTL_JID_ANY can be used to wildcard the job id.

pt_index input Identifies the Portal index(es) that can be used. The value PTL_PT_INDEX_ANY can be
used to wildcard the Portal index.

3.13 Data Movement Operations

The Portals API provides five data movement operations: PtlPut, PtlPutRegion, PtlGet, PtlGetRegion, and PtlGetPut.

3.13.1 Portal Acknowledgment Type Definition

typedef enum { PTL_ACK_REQ, PTL_NO_ACK_REQ } ptl_ack_req_t;

Values of the type ptl_ack_req_t are used to control whether an acknowledgement should be sent when the op-
eration completes (i.e., when the data has been written to a memory descriptor of the target process). The value
PTL_ACK_REQ requests an acknowledgement, the value PTL_NO_ACK_REQ requests that no acknowledgement should
be generated.

3.13.2 PtlPut

int PtlPut(ptl_handle_md_t md_handle,
ptl_ack_req_t ack_req,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
ptl_hdr_data_t hdr_data);

The PtlPut function initiates an asynchronous put operation. There are several events associated with a put opera-
tion: initiation of the send on the local node (PTL_EVENT_SEND_START), completion of the send on the local node
(PTL_EVENT_SEND_END), and, when the send completes successfully, the receipt of an acknowledgement
(PTL_EVENT_ACK) indicating that the operation was accepted by the target. These events will be logged in the event
queue associated with the memory descriptor (md_handle) used in the put operation. Using a memory descriptor that
does not have an associated event queue results in these events being discarded. In this case, the caller must have an-
other mechanism (e.g., a higher level protocol) for determining when it is safe to modify the memory region associated
with the memory descriptor.

32

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_MD_INVALID Indicates that md_handle is not a valid memory descriptor.

PTL_PROCESS_INVALID Indicates that target_id is not a valid process id.

Arguments

md_handle input A handle for the memory descriptor that describes the memory to be sent. If the mem-
ory descriptor has an event queue associated with it, it will be used to record events
when the message has been sent (PTL_EVENT_SEND_START, PTL_EVENT_SEND_END).

ack_req input Controls whether an acknowledgement event is requested. Acknowledgements are
only sent when they are requested by the initiating process and the memory descrip-
tor has an event queue and the target memory descriptor enables them. Allowed
constants: PTL_ACK_REQ, PTL_NO_ACK_REQ.

target_id input A process id for the target process.
pt_index input The index in the remote Portal table.
ac_index input The index into the access control table of the target process.

match_bits input The match bits to use for message selection at the target process.
remote_offset input The offset into the target memory descriptor (only used when the target memory de-

scriptor has the PTL_MD_MANAGE_REMOTE option set).
hdr_data input 64 bits of user data that can be included in message header. This data is written to an

event queue entry at the target if an event queue is present on the matching memory
descriptor.

3.13.3 PtlPutRegion
int PtlPutRegion(ptl_handle_md_t md_handle,

ptl_size_t local_offset,
ptl_size_t length;
ptl_ack_req_t ack_req,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
ptl_hdr_data_t hdr_data);

The PtlPutRegion function is identical to the PltPut function except that it allows a region of memory within the
memory descriptor to be sent rather than the entire memory descriptor. The local offset is used to determine the
starting address of the memory region and the length specifies the length of the region in bytes. It is an error for the
local offset and length parameters to specify memory outside the memory described by the memory descriptor.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_MD_INVALID Indicates that md_handle is not a valid memory descriptor.

PTL_MD_ILLEGAL Indicates that local_offset and length specify a region outside the bounds of the memory
descriptor.

33

PTL_PROCESS_INVALID Indicates that target_id is not a valid process id.

Arguments

md_handle input A handle for the memory descrip-
tor that describes the memory to be
sent.

local_offset input Offset from the start of the memory
descriptor.

length input Length of the memory region to be
sent.

ack_req,target_id,pt_index,ac_index input See the discussion for PtlPut.
match_bits,remote_offset,hdr_data input See the discussion for PtlPut.

3.13.4 PtlGet
int PtlGet(ptl_handle_md_t md_handle,

ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset);

The PtlGet function initiates a remote read operation. There are two event pairs associated with a get operation , when
the data is sent from the remote node, a PTL_EVENT_GET_{START,END} event pair is registered on the remote node;
and when the data is returned from the remote node a PTL_EVENT_REPLY_{START,END} event pair is registered on the
local node.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_MD_INVALID Indicates that md_handle is not a valid memory descriptor.

PTL_PROCESS_INVALID Indicates that target_id is not a valid process id.

Arguments

md_handle input A handle for the memory descriptor that describes the memory into which the re-
quested data will be received. The memory descriptor can have an event queue asso-
ciated with it to record events, such as when the message receive has started.

target_id input A process id for the target process.
pt_index input The index in the remote Portal table.
ac_index input The index into the access control table of the target process.

match_bits input The match bits to use for message selection at the target process.
remote_offset input The offset into the target memory descriptor (only used when the target memory de-

scriptor has the PTL_MD_MANAGE_REMOTE option set).

3.13.5 PtlGetRegion
int PtlGetRegion(ptl_handle_md_t md_handle,

ptl_size_t local_offset,
ptl_size_t length,
ptl_process_id_t target_id,

34

ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset);

The PtlGetRegion function is identical to the PtlGet function except that it allows a region of memory within the
memory descriptor to accept a reply rather than the entire memory descriptor. The local offset is used to determine the
starting address of the memory region and the length specifies the length of the region in bytes. It is an error for the
local offset and length parameters to specify memory outside the memory described by the memory descriptor.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_MD_INVALID Indicates that md_handle is not a valid memory descriptor.

PTL_MD_ILLEGAL Indicates that local_offset and length specify a region outside the bounds of the memory de-
scriptor.

PTL_PROCESS_INVALID Indicates that target_id is not a valid process id.

Arguments

md_handle input A handle for the memory descriptor that describes the memory
into which the requested data will be received. The memory
descriptor can have an event queue associated with it to record
events, such as when the message receive has started.

local_offset input Offset from the start of the memory descriptor.
length input Length of the memory region for the reply.

target_id, pt_index, ac_index input See discussion for PtlGet.
match_bits, remote_offset input See discussion for PtlGet.

3.13.6 PtlGetPut
int PtlGetPut(ptl_handle_md_t get_md_handle,

ptl_handle_md_t put_md_handle,
ptl_process_id_t target_id,
ptl_pt_index_t pt_index,
ptl_ac_index_t ac_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
ptl_hdr_data_t hdr_data);

The PtlGet function performs an atomic swap of data at the destination with the data passed in the put memory
descriptor. The original contents of the memory region on the target are returned in a reply message and placed into
the get memory descriptor upon receipt by the initiator. An implementation may restrict the length of the memory
descriptors used in PtlGetPut, but must support at least 8 bytes. The remote memory descriptor must be configured to
respond to both get operations and put operations.
There are three event pairs associated with a get operation. When dat is sent from the local node, a
PTL_EVENT_SENT_{START,END} is registerd on the local node. When the data is sent from the remote node, a
PTL_EVENT_GETPUT_{START,END} event pair is registered on the remote node; and when the data is returned from
the remote node a PTL_EVENT_REPLY_{START,END} event pair is registered on the local node.

35

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_MD_INVALID Indicates that put_md_handle or get_md_handle is not a valid memory descriptor.

PTL_PROCESS_INVALID Indicates that target_id is not a valid process id.

Arguments

get_md_handle input A handle for the memory descriptor that describes the memory into which the re-
quested data will be received. The memory descriptor can have an event queue asso-
ciated with it to record events, such as when the message receive has started.

put_md_handle input A handle for the memory descriptor that describes the memory to be sent. If the
memory descriptor has an event queue associated with it, it will be used to record
events when the message has been sent.

target_id input A process id for the target process.
pt_index input The index in the remote Portal table.
ac_index input The index into the access control table of the target process.

match_bits input The match bits to use for message selection at the target process.
remote_offset input The offset into the target memory descriptor (only used when the target memory de-

scriptor has the PTL_MD_MANAGE_REMOTE option set).
hdr_data input 64 bits of user data that can be included in message header. This data is written to an

event queue entry at the target if an event queue is present on the matching memory
descriptor.

3.14 PtlHandleIsEqual
int PtlHandleIsEqual(ptl_handle_any_t handle1,

ptl_handle_any_t handle2);

The PtlHandleIsEqual function compares two handles to determine if they represent the same object.

Return Codes

PTL_OK Indicates that the handles are equivalent.

PTL_FAIL Indicates that the two handles are not equivalent.

Arguments

handle1, handle2 input A handle for an object. Either of these handles is allowed to be the constant value,
PTL_INVALID_HANDLE, which represents the value of an invalid handle.

3.15 Summary
We conclude this section by summarizing the names introduced by the Portals 3.3 API. We start by summarizing the
names of the types introduced by the API. This is followed by a summary of the functions introduced by the API.
Which is followed by a summary of the function return codes. Finally, we conclude with a summary of the other
constant values introduced by the API.

Table 3.2 presents a summary of the types defined by the Portals API. The first column in this table gives the type
name, the second column gives a brief description of the type, the third column identifies the section where the type is
defined, and the fourth column lists the functions that have arguments of this type.

36

Table 3.2: Types Defined by the Portals 3.3 API

Name Meaning Sect Functions
ptl_ac_index_t indexes for an access control table 3.2.3 PtlACEntry, PtlPut, PtlPutRegion, Ptl-

Get, PtlGetRegion, PtlGetPut
ptl_ack_req_t acknowledgement request types 3.13.2 PtlPut, PtlPutRegion
ptl_eq_handler_t event queue handler function 3.11.5 PtlEQAlloc
ptl_event_kind_t kinds of events 3.11.1 PtlEQGet, PtlEQWait, PtlEQPoll
ptl_event_t information about events 3.11.4 PtlEQGet, PtlEQWait, PtlEQPoll
plt_seq_t event sequence number 3.11.4 PtlEQGet, PtlEQWait, PtlEQPoll
ptl_handle_any_t handles for any object 3.2.2 PtlNIHandle, PtlHandleIsEqual
ptl_handle_eq_t handles for event queues 3.2.2 PtlEQAlloc, PtlEQFree, PtlEQGet,

PtlEQWait, PtlEQPoll, PtlMDUpdate
ptl_handle_md_t handles for memory descriptors 3.2.2 PtlMDAlloc, PtlMDUnlink, PtlMDUp-

date, PtlMEAttach, PtlMEAttachAny,
PtlMEInsert, PtlPut, PtlPutRegion, Ptl-
Get, PtlGetRegion, PtlGetPut

ptl_handle_me_t handles for match entries 3.2.2 PtlMEAttach, PtlMEAttachAny,
PtlMEInsert, PtlMEUnlink

ptl_handle_ni_t handles for network interfaces 3.2.2 PtlNIInit, PtlNIFini, PtlNIStatus, PtlNI-
Dist, PtlEQAlloc, PtlACEntry

ptl_nid_t node identifiers 3.2.6 PtlGetId, PtlACEntry
ptl_pid_t process identifier 3.2.6 PtlGetId, PtlACEntry
ptl_uid_t user indentifier 3.2.6 PtlGetUid, PtlACEntry
ptl_jid_t job identifier 3.8 PtlGetJid, PtlACEntry
ptl_ins_pos_t insertion position (before or after) 3.9.2 PtlMEAttach, PtlMEAttachAny,

PtlMEInsert
ptl_interface_t identifiers for network interfaces 3.2.5 PtlNIInit
ptl_match_bits_t match (and ignore) bits 3.2.4 PtlMEAttach, PtlMEAttachAny,

PtlMEInsert, PtlPut, PtlPutRegion,
PtlGet, PtlGetRegion, PtlGetPut

ptl_md_t memory descriptors 3.10.1 PtlMDAttach, PtlMDBind, PtlMDUp-
date

ptl_ni_fail_t network interface-specific failures 3.11 PtlEQGet, PtlEQWait, PtlEQPoll
ptl_process_id_t process identifiers 3.7.1 PtlGetId, PtlNIDist, PtlMEAttach,

PtlMEAttachAny, PtlACEntry, PtlPut,
PtlPutRegion, PtlGet, PtlGetRegion,
PtlGetPut

ptl_pt_index_t indexes for Portal tables 3.2.3 PtlMEAttach, PtlMEAttachAny, PtlPut,
PtlPutRegion, PtlGet, PtlGetRegion,
PtlGetPut, PtlACEntry

ptl_size_t sizes 3.2.1 PtlEQAlloc, PtlPut, PtlPutRegion, Ptl-
Get, PtlGetRegion

ptl_sr_index_t indexes for status registers 3.2.7 PtlNIStatus
ptl_sr_value_t values in status registers 3.2.7 PtlNIStatus
ptl_unlink_t unlink options 3.9.2 PtlMEAttach, PtlMEAttachAny,

PtlMEInsert, PtlMDAttach

37

Table 3.3 presents a summary of the functions defined by the Portals API. The first column in this table gives the
name for the function, the second column gives a brief description of the operation implemented by the function, and
the third column identifies the section where the function is defined.

Table 3.3: Functions Defined by the Portals 3.3 API

Name Operation Section
PtlACEntry update an entry in an access control table 3.12
PtlEQAlloc create an event queue 3.11
PtlEQGet get the next event from an event queue 3.11
PtlEQFree release the resources for an event queue 3.11
PtlEQPoll poll for a new event on multiple event queues 3.11.11
PtlEQWait wait for a new event in an event queue 3.11
PtlFini shutdown the Portals API 3.4
PtlGet perform a get operation 3.13.4
PtlGetId get the id for the current process 3.7
PtlGetJid get the job id for the current process 3.8
PtlGetPut perform an atomic swap operation 3.13.6
PtlGetRegion perform a get operation on a memory descriptor region 3.13.5
PtlInit initialize the Portals API 3.4
PtlMDAttach create a memory descriptor and attach it to a match entry 3.10
PtlMDBind create a free-floating memory descriptor 3.10.4
PtlMDUnlink remove a memory descriptor from a list and release its resources 3.10
PtlMDUpdate update a memory descriptor 3.10
PtlMEAttach create a match entry and attach it to a Portal table 3.9
PtlMEAttachAny create a match entry and attach it to a free Portal table entry 3.9.3
PtlMEInsert create a match entry and insert it in a list 3.9
PtlMEUnlink remove a match entry from a list and release its resources 3.9
PtlNIDist get the distance to another process 3.5
PtlNIFini shutdown a network interface 3.5
PtlNIHandle get the network interface handle for an object 3.5
PtlNIInit initialize a network interface 3.5
PtlNIStatus read a network interface status register 3.5
PtlPut perform a put operation 3.13.2
PtlPutRegion perform a put operation on a memory descriptor region 3.13.3

Table 3.4 summarizes the return codes used by functions defined by the Portals API. All of these constants are
integer values. The first column of this table gives the symbolic name for the constant, the second column gives a brief
description of the value, and the third column identifies the functions that can return this value.

Table 3.5 summarizes the remaining constant values introduced by the Portals API. The first column in this table
presents the symbolic name for the constant, the second column gives a brief description of the value, the third column
identifies the type for the value, and the fourth column identifies the sections in which the value is mentioned.

38

Table 3.4: Function Return Codes for the Portals 3.3 API

Name Meaning Functions
PTL_AC_INDEX_INVALID invalid access control table index PtlACEntry
PTL_EQ_DROPPED at least one event has been dropped PtlEQGet, PtlWait
PTL_EQ_EMPTY no events available in an event queue PtlEQGet
PTL_FAIL error during initialization or cleanup PtlInit, PtlFini
PTL_MD_ILLEGAL illegal memory descriptor values PtlMDAttach, PtlMDBind, PtlMDUpdate
PTL_IFACE_DUP duplicate initialization of an interface PtlNIInit
PTL_IFACE_INVALID initialization of an invalid interface PtlNIInit
PTL_EQ_INVALID invalid event queue handle PtlMDUpdate, PtlEQFree, PtlEQGet
PTL_HANDLE_INVALID invalid handle PtlNIHandle
PTL_MD_INVALID invalid memory descriptor handle PtlMDUnlink, PtlMDUpdate
PTL_ME_INVALID invalid match entry handle PtlMDAttach
PTL_NI_INVALID invalid network interface handle PtlNIDist, PtlNIFini, PtlMDBind, PtlEQAlloc
PTL_PID_INVALID invalid pid PtlNIInit
PTL_PROCESS_INVALID invalid process identifier PtlNIInit, PtlNIDist, PtlMEAttach, PtlMEIn-

sert, PtlACEntry, PtlPut, PtlGet
PTL_PT_INDEX_INVALID invalid Portal table index PtlMEAttach
PTL_SR_INDEX_INVALID invalid status register index PtlNIStatus
PTL_ME_LIST_TOO_LONG match entry list too long PtlMEAttach, PtlMEInsert
PTL_MD_IN_USE MD has pending operations PtlMDUnlink
PTL_ME_IN_USE ME has pending operations PtlMEUnlink
PTL_NO_INIT uninitialized API all, except PtlInit
PTL_NO_SPACE insufficient memory PtlNIInit, PtlMDAttach, PtlMDBind, PtlEQAl-

loc, PtlMEAttach, PtlMEInsert
PTL_MD_NO_UPDATE no update was performed PtlMDUpdate
PTL_PT_FULL Portal table is full PtlMEAttachAny
PTL_OK success all
PTL_SEGV addressing violation PtlNIInit, PtlNIStatus, PtlNIDist, PtlNIHandle,

PtlMDBind, PtlMDUpdate, PtlEQAlloc, PtlE-
QGet, PtlEQWait

39

Table 3.5: Other Constants Defined by the Portals 3.3 API

Name Meaning Base type Intr. Ref.
PTL_ACK_REQ request an acknowledgement ptl_ack_req_t 3.13.2
PTL_EQ_NONE a NULL event queue handle ptl_handle_eq_t 3.2.2 3.10, 3.10.6
PTL_EQ_HANDLER_NONE a NULL event queue handler function ptl_eq_handler_t 3.11.5 3.11.6
PTL_EVENT_GET_START get event start ptl_event_kind_t 3.11.1 3.13.4
PTL_EVENT_GET_END get event end ptl_event_kind_t 3.11.1 3.13.4
PTL_EVENT_PUT_START put event start ptl_event_kind_t 3.11.1 3.13.2
PTL_EVENT_PUT_END put event end ptl_event_kind_t 3.11.1 3.13.2
PTL_EVENT_GETPUT_START getput event start ptl_event_kind_t 3.11.1 3.13.6
PTL_EVENT_GETPUT_END getput event end ptl_event_kind_t 3.11.1 3.13.6
PTL_EVENT_REPLY_START reply event start ptl_event_kind_t 3.11.1 3.13.4
PTL_EVENT_REPLY_END reply event end ptl_event_kind_t 3.11.1 3.13.4
PTL_EVENT_ACK_START acknowledgement event start ptl_event_kind_t 3.11.1 3.13.2
PTL_EVENT_ACK_END acknowledgement event end ptl_event_kind_t 3.11.1 3.13.2
PTL_EVENT_SEND_START send event start ptl_event_kind_t 3.11.1 3.13.2
PTL_EVENT_SEND_END send event end ptl_event_kind_t 3.11.1 3.13.2
PTL_EVENT_UNLINK unlink event ptl_event_kind_t 3.11.1 3.10.1
PTL_INVALID_HANDLE invalid handle ptl_handle_any_t 3.2.2
PTL_PID_ANY wildcard for process id fields ptl_pid_t 3.2.6 3.9.2, 3.12.1
PTL_NID_ANY wildcard for node id fields ptl_nid_t 3.2.6 3.9.2, 3.12.1
PTL_UID_ANY wildcard for user id ptl_uid_t 3.2.6 3.9.2, 3.12.1
PTL_JID_ANY wildcard for job id ptl_jid_t 3.8 3.12.1
PTL_JID_NONE jid not supported for process ptl_jid_t 3.8
PTL_IFACE_DEFAULT default interface ptl_interface_t 3.2.5
PTL_INSERT_AFTER insert after ptl_ins_pos_t 3.9.4
PTL_INSERT_BEFORE insert before ptl_ins_pos_t 3.9.4
PTL_MD_ACK_DISABLE a flag to disable acknowledgements int 3.10.1
PTL_MD_EVENT_START_DISABLE a flag to disable start events int 3.10.1
PTL_MD_EVENT_END_DISABLE a flag to disable end events int 3.10.1
PTL_MD_MANAGE_REMOTE a flag to enable the use of remote offsets int 3.10.1 3.13.2, 3.13.4
PTL_MD_OP_GET a flag to enable get operations int 3.10.1
PTL_MD_OP_PUT a flag to enable put operations int 3.10.1
PTL_MD_THRESH_INF infinite threshold for a memory descriptor int 3.10.1
PTL_MD_TRUNCATE a flag to enable truncation of a request int 3.10.1
PTL_MD_IOVEC a flag to enable scatter/gather memory descriptors int 3.10.1
PTL_NO_ACK_REQ request no acknowledgement ptl_ack_req_t 3.13.2
PTL_PT_INDEX_ANY wildcard for Portal indexes ptl_pt_index_t 3.12.1
PTL_RETAIN disable unlinking ptl_unlink_t 3.10.3
PTL_SR_DROP_COUNT index for the dropped count register ptl_sr_index_t 3.2.7 3.5.4
PTL_TIME_FOREVER a flag to indicate unbounded time ptl_time_t ?? 3.11.11
PTL_UNLINK enable unlinking ptl_unlink_t 3.10.3

Chapter 4

The Semantics of Message Transmission

The portals API uses four types of messages: put requests, acknowledgements, get requests, and replies. In this section,
we describe the information passed on the wire for each type of message. We also describe how this information is
used to process incoming messages.

4.1 Sending Messages
Table 4.1 summarizes the information that is transmitted for a put request. The first column provides a descriptive
name for the information, the second column provides the type for this information, the third column identifies the
source of the information, and the fourth column provides additional notes. Most information that is transmitted is
obtained directly from the PtlPut operation. Notice that the handle for the memory descriptor used in the PtlPut
operation is transmitted even though this value cannot be interpreted by the target. A value of anything other than
PTL_MD_NONE, is interpreted as a request for an acknowledgement.

Table 4.1: Information Passed in a Put Request

Information Type PtlPut arg Notes
operation int indicates a put request
initiator ptl_process_id_t local information
user ptl_uid_t local information
job id ptl_jid_t local information (if supported)
target ptl_process_id_t target_id
portal index ptl_pt_index_t pt_index
cookie ptl_ac_index_t ac_index
match bits ptl_match_bits_t match_bits
offset ptl_size_t remote_offset
memory desc ptl_handle_md_t md_handle no ack if PTL_MD_NONE
length ptl_size_t md_handle length member
data bytes md_handle start and length members

Table 4.2 summarizes the information transmitted in an acknowledgement. Most of the information is simply
echoed from the put request. Notice that the initiator and target are obtained directly from the put request, but are
swapped in generating the acknowledgement. The only new piece of information in the acknowledgement is the
manipulated length which is determined as the put request is satisfied.

Table 4.3 summarizes the information that is transmitted for a get request. Like the information transmitted in a
put request, most of the information transmitted in a get request is obtained directly from the PtlGet operation. Unlike
put requests, get requests do not include the event queue handle. In this case, the reply is generated whenever the

40

41

Table 4.2: Information Passed in an Acknowledgement

Information Type Put Information Notes
operation int indicates an acknowledgement
initiator ptl_process_id_t target
target ptl_process_id_t initiator
portal index ptl_pt_index_t portal index echo
match bits ptl_match_bits_t match bits echo
offset ptl_size_t offset echo
memory desc ptl_handle_md_t memory desc echo
requested length ptl_size_t length echo
manipulated length ptl_size_t obtained from the operation

operation succeeds and the memory descriptor must not be unlinked until the reply is received. As such, there is no
advantage to explicitly sending the event queue handle.

Table 4.3: Information Passed in a Get Request

Information Type PtlGet argument Notes
operation int indicates a get operation
initiator ptl_process_id_t local information
user ptl_uid_t local information
job id ptl_jid_t local information (if supported)
target ptl_process_id_t target_id
portal index ptl_pt_index_t pt_index
cookie ptl_ac_index_t ac_entry
match bits ptl_match_bits_t match_bits
offset ptl_size_t remote_offset
memory desc ptl_handle_md_t md_handle
length ptl_size_t md_handle length member

Table 4.4 summarizes the information transmitted in a reply. Like an acknowledgement, most of the information is
simply echoed from the get request. The initiator and target are obtained directly from the get request, but are swapped
in generating the acknowledgement. The only new information in the acknowledgement are the manipulated length
and the data, which are determined as the get request is satisfied.

4.2 Receiving Messages

When an incoming message arrives on a network interface, the communication system first checks that the target
process identified in the request is a valid process that has initialized the network interface (i.e., that the target process
has a valid Portal table). If this test fails, the communication system discards the message and increments the dropped
message count for the interface. The remainder of the processing depends on the type of the incoming message. Put
and get messages are subject to access control checks and translation (searching a match list), while acknowledgement
and reply messages bypass the access control checks and the translation step.

Acknowledgement messages include a handle for the memory descriptor used in the original PtlPut or PtlPutRe-
gion operation. This memory descriptor will identify the event queue where the event should be recorded. Upon receipt
of an acknowledgement, the runtime system only needs to confirm that the memory descriptor and event queue still
exist and that there is space for another event. Should the any of these conditions fail, the message is simply discarded

42

Table 4.4: Information Passed in a Reply

Information Type Put Information Notes
operation int indicates an acknowledgement
initiator ptl_process_id_t target
target ptl_process_id_t initiator
portal index ptl_pt_index_t portal index echo
match bits ptl_match_bits_t match bits echo
offset ptl_size_t offset echo
memory desc ptl_handle_md_t memory desc echo
requested length ptl_size_t length echo
manipulated length ptl_size_t obtained from the operation
data bytes obtained from the operation

and the dropped message count for the interface is incremented. Otherwise, the system builds an acknowledgement
event from the information in the acknowledgement message and adds it to the event queue.

Reception of reply messages is also relatively straightforward. Each reply message includes a handle for a memory
descriptor. If this descriptor exists, it is used to receive the message. A reply message will be dropped if the memory
descriptor identified in the request doesn’t exist. In either of this case, the dropped message count for the interface is
incremented. These are the only reasons for dropping reply messages. Every memory descriptor accepts and truncates
incoming reply messages, eliminating the other potential reasons for rejecting a reply message.

The critical step in processing an incoming put or get request involves mapping the request to a memory descriptor.
This step starts by using the Portal index in the incoming request to identify a list of match entries. This list of match
entries is searched in order until a match entry is found whose match criteria matches the match bits in the incoming
request and whose memory descriptor accepts the request.

Because acknowledge and reply messages are generated in response to requests made by the process receiving
these messages, the checks performed by the runtime system for acknowledgements and replies are minimal. In
contrast, put and get messages are generated by remote processes and the checks performed for these messages are
more extensive. Incoming put or get messages may be rejected because:

� the Portal index supplied in the request is not valid;

� the access control index supplied in the request is not a valid access control entry;

� the access control entry identified by the index does not match the identifier of the requesting process;

� the access control entry identified by the access control entry does not match the Portal index supplied in the
request; or

� the match bits supplied in the request do not match any of the match entries with a memory descriptor that
accepts the request.

In all cases, if the message is rejected, the incoming message is discarded and the dropped message count for the
interface is incremented.

A memory descriptor may reject an incoming request for any of the following reasons:

� the PTL_MD_PUT or PTL_MD_GET option has not been enabled and the operation is put, get, or swap;

� the length specified in the request is too long for the memory descriptor and the PTL_MD_TRUNCATE option has
not been enabled.

Acknowledgments

Several people have contributed to the philosophy, design, and implementation of the Portals message passing archi-
tecture as it has evolved. We acknowledge the following people for their contributions: Al Audette, Eric Barton, Lee
Ann Fisk, David Greenberg, Eric Hoffman, Gabi Istrail, Chu Jong, Mike Levenhagen, Jim Otto, Kevin Pedretti, Mark
Sears, Lance Shuler, Mack Stallcup, Jeff VanDyke, Dave van Dresser, Lee Ward, and Stephen Wheat.

43

Bibliography

[1] R. Brightwell, D. S. Greenberg, A. B. Maccabe, and R. Riesen. Massively Parallel Computing with Commodity Components.
Parallel Computing, 26:243–266, February 2000.

[2] R. Brightwell and L. Shuler. Design and implementation of MPI on Puma portals. In Proceedings of the Second MPI
Developer’s Conference, pages 18–25, July 1996.

[3] Compaq, Microsoft, and Intel. Virtual Interface Architecture Specification Version 1.0. Technical report, Compaq, Microsoft,
and Intel, December 1997.

[4] Cray Research, Inc. SHMEM Technical Note for C, SG-2516 2.3, October 1994.
[5] M. Lauria, S. Pakin, and A. Chien. Efficient Layering for High Speed Communication: Fast Messages 2.x. In Proceedings

of the IEEE International Symposium on High Performance Distributed Computing, 1998.
[6] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat. SUNMOS for the Intel Paragon: A brief user’s guide. In

Proceedings of the Intel Supercomputer Users’ Group. 1994 Annual North America Users’ Conference., pages 245–251,
June 1994.

[7] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The International Journal of Supercomputer
Applications and High Performance Computing, 8, 1994.

[8] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997. http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html.

[9] Myricom, Inc. The GM Message Passing System. Technical report, Myricom, Inc., 1997.
[10] Sandia National Laboratories. ASCI Red, 1996. http://www.sandia.gov/ASCI/TFLOP.
[11] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup. The Puma operating system for

massively parallel computers. In Proceeding of the 1995 Intel Supercomputer User’s Group Conference. Intel Supercomputer
User’s Group, 1995.

[12] Task Group of Technical Committee T11. Information Technology - Scheduled Transfer Protocol - Working Draft 2.0.
Technical report, Accredited Standards Committee NCITS, July 1998.

44

Summary of Changes for Version 3.3

1. Section 3.11.11: added PltEQPoll.

2. Section 3.13.3: added PtlPutRegion.

3. Section 3.13.5: added PtlGetRegion.

4. Section 3.10: added PTL_MD_EVENT_START_DISABLE and PTL_MD_EVENT_END_DISABLE options.

5. Section 3.11.5: added event queue handler capability.

6. Changed naming scheme to be consistent across the entire API.

7. Moved change summaries to the end of the document.

45

Summary of Changes for Version 3.2

1. Updated version number to 3.2 throughout the document

2. Section 3.7.2: added PTL_SEGV to error list for PtlGetId.

3. Section 3.9.2: added PTL_ML_TOO_LONG to error list for PtlMEAttach.

4. Section 3.9.5: removed text referring to a list of associated memory descriptors.

5. Section 3.10.5: added text to describe unlinking a free-floating memory descriptor.

6. Table 3.2: added entry for ptl_seq_t.

7. Section 3.10.1:

(a) added definition of max_offset.

(b) added text to clarify PTL_MD_MANAGE_REMOTE.

8. Section 3.10.3: modified text for unlink_op.

9. Section 3.5.2: added text to clarify multiple calls to PtlNIInit.

10. Section 3.10.3: added text to clarify unlink_nofit.

11. Section 4.2: removed text indicating that an MD will reject a message if the associated EQ is full.

12. Section 3.10.5: added PTL_MD_IN_USE error code and text to indicate that only MDs with no pending operations
can be unlinked.

13. Table 3.4: added PTL_MD_IN_USE return code.

14. Section 3.11.4: added user id field, MD handle field, and NI specific failure field to the ptl_event_t structure.

15. Table 3.2: added ptl_ni_fail_t.

16. Section 3.11.4: added PTL_EVENT_UNLINK event type.

17. Table 3.3: removed PtlTransId.

18. Section 3.9.2, Section 3.9.4, Section 3.13.2: listed allowable constants with relevant fields.

19. Table 3.3: added PtlMEAttachAny function.

20. Table 3.4: added PTL_PT_FULL return code for PtlMEAttachAny.

21. Table 3.5: updated to reflect new event types.

22. Section 3.2.6: added ptl_nid_t, ptl_pid_t, and ptl_uid_t.

23. Section 3.5.1: added max_iovs and max_match_list_length.

46

47

24. Section 3.10: changed max_offset to max_size and added PTL_MD_IOV option.

25. Added Section 3.8.

26. Added Section 3.13.6.

27. Got rid of the chapter with obsolete examples.

Summary of Changes for Version 3.1

Thread Issues
The most significant change to the interface from version 3.0 to 3.1 involves the clarification of how the interface
interacts with multi-threaded applications. We adopted a generic thread model in which processes define an address
space and threads share the address space. Consideration of the API in the light of threads lead to several clarifications
throughout the document:

1. Glossary:

(a) added a definition for thread,

(b) reworded the definition for process.

2. Section 2: added section 2.4 to describe the multi-threading model used by the Portals API.

3. Section 3.4.1: PtlInit must be called at least once and may be called any number of times.

4. Section 3.4.2: PtlFini should be called once as the process is terminating and not as each thread terminates.

5. Section 3.7: Portals does not define thread ids.

6. Section 3.5: network interfaces are associated with processes, not threads.

7. Section 3.5.2: PtlNIInit must be called at least once and may be called any number of times.

8. Section 3.11.9: PtlEQGet returns PTL_EQ_EMPTY if a thread is blocked on PtlEQWait.

9. Section 3.11.10: waiting threads are awakened in FIFO order.

Two functions, PtlNIBarrier and PtlEQCount were removed from the API. PtlNIBarrier was defined to block the
calling process until all of the processes in the application group had invoked PtlNIBarrier. We now consider this
functionality, along with the concept of groups (see the discussion under “other changes”), to be part of the runtime
system, not part of the Portals API. PtlEQCount was defined to return the number of events in an event queue. Because
external operations may lead to new events being added and other threads may remove events, the value returned by
PtlEQCount would have to be a hint about the number of events in the event queue.

Handling small, unexpected messages
Another set of changes relates to handling small unexpected messages in MPI. In designing version 3.0, we assumed
that each unexpected message would be placed in a unique memory descriptor. To avoid the need to process a long list
of memory descriptors, we moved the memory descriptors out of the match list and hung them off of a single match list
entry. In this way, large unexpected messages would only encounter a single “short message” match list entry before
encountering the “long message” match list entry. Experience with this strategy identified resource management
problems with this approach. In particular, a long sequence of very short (or zero length) messages could quickly
exhaust the memory descriptors constructed for handling unexpected messages. Our new strategy involves the use

48

49

of several very large memory descriptors for small unexpected messages. Consecutive unexpected messages will be
written into the first of these memory descriptors until the memory descriptor fills up. When the first of the “small
memory” descriptors fills up, it will be unlinked and subsequent short messages will be written into the next “short
message” memory descriptor. In this case, a “short message” memory descriptor will be declared full when it does not
have sufficient space for the largest small unexpected message.

This lead to two significant changes. First, each match list entry now has a single memory descriptor rather than
a list of memory descriptors. Second, in addition to exceeding the operation threshold, a memory descriptor can be
unlinked when the local offset exceeds a specified value. These changes have lead to several changes in this document:

1. Section 2.2:

(a) removed references to the memory descriptor list,

(b) changed the portals address translation description to indicate that unlinking a memory descriptor implies
unlinking the associated match list entry–match list entries can no longer be unlinked independently from
the memory descriptor.

2. Section 3.9.2:

(a) removed unlink from argument list,

(b) removed description of ptl_unlink type,

(c) changed wording of the error condition when the Portal table index already has an associated match list.

3. Section 3.9.4: removed unlink from argument list.

4. Section 3.10.1: added max_offset.

5. Section 3.10.3:

(a) added description of ptl_unlink type,

(b) removed reference to memory descriptor lists,

(c) changed wording of the error condition when match list entry already has an associated memory descriptor,

(d) changed the description of the unlink argument.

6. Section 3.10: removed PtlMDInsert operation.

7. Section 3.10.4: removed references to memory descriptor list.

8. Section 3.10.5: removed reference to memory descriptor list.

9. Section 3.15: removed references to PtlMDInsert.

10. Section 4: removed reference to memory descriptor list.

11. Revised the MPI example to reflect the changes to the interface.

Several changes have been made to improve the general documentation of the interface.

1. Section 3.2.2: documented the special value PTL_EQ_NONE.

2. Section 3.2.6: documented the special value PTL_ID_ANY.

3. Section 3.10.4: documented the return value PTL_INV_EQ

4. Section 3.10.6: clarified the description of the PtlMDUpdate function.

5. Introduced a new section to document the implementation defined values.

6. Section 3.15: modified Table 3.5 to indicate where each constant is introduced and where it is used.

50

Other changes

Implementation defined limits (Section 3.5.2)
The earlier version provided implementation defined limits for the maximum number of match entries, the maximum
number of memory descriptors, etc. Rather than spanning the entire implementation, these limits are now associated
with individual network interfaces.

Added User Ids (Section 3.6)
Group Ids had been used to simplify access control entries. In particular, a process could allow access for all of the
processes in a group. User Ids have been introduced to regain this functionality. We use user ids to fill this role.

Removed Group Ids and Rank Ids (Section 3.7)
The earlier version of Portals had two forms for addressing processes: <node id, process id> and <group id, rank id>.
A process group was defined as the collection processes created during application launch. Each process in the group
was given a unique rank id in the range 0 to n � 1 where n was the number of processes in the group. We removed
groups because they are better handled in the runtime system.

Match lists (Section 3.9.2)
It is no longer illegal to have an existing match entry when calling PtlMEAttach. A position argument was added to
the list of arguments supplied to PtlMEAttach to specify whether the new match entry is prepended or appended to the
existing list. If there is no existing match list, the position argument is ignored.

Unlinking Memory Descriptors (Section 3.10)
Previously, a memory descriptor could be unlinked if the offset exceeded a threshold upon the completion of an
operation. In this version, the unlinking is delayed until there is a matching operation which requires more memory
than is currently available in the descriptor. In addition to changes in section, this lead to a revision of Figure 2.5.

Split Phase Operations and Events (Section 3.11)
Previously, there were five types of events: PTL_EVENT_PUT, PTL_EVENT_GET, PTL_EVENT_REPLY, PTL_EVENT_SENT,
and PTL_EVENT_ACK. The first four of these reflected the completion of potentially long operations. We have intro-
duced new event types to reflect the fact that long operations have a distinct starting point and a distinct completion
point. Moreover, the completion may be successful or unsuccessful.

In addition to providing a mechanism for reporting failure to higher levels of software, this split provides an
opportunity for for improved ordering semantics. Previously, if one process intiated two operations (e.g., two put
operations) on a remote process, these operations were guaranteed to complete in the same order that they were
initiated. Now, we only guarantee that the initiation events are delivered in the same order. In particular, the operations
do not need to complete in the order that they were intiated.

Well known proces ids (Section 3.5.2)
To support the notion of “well known process ids,” we added a process id argument to the arguments for PtlNIInit.

